Add time complexity in stack, queue, deque. Update heap.

pull/241/head
Yudong Jin 2 years ago
parent ecabb4077b
commit 6b3c87399b

@ -1,4 +0,0 @@
{
"tabWidth": 4,
"useTabs": false
}

@ -12,28 +12,26 @@ import java.util.*;
public class heap {
public static void testPush(Queue<Integer> heap, int val) {
// 元素入堆
heap.add(val);
heap.add(val); // 元素入堆
System.out.format("\n添加元素 %d 后\n", val);
PrintUtil.printHeap(heap);
}
public static void testPoll(Queue<Integer> heap) {
// 元素出堆
int val = heap.poll();
int val = heap.poll(); // 堆顶元素出堆
System.out.format("\n出堆元素为 %d\n", val);
PrintUtil.printHeap(heap);
}
public static void main(String[] args) {
/* 初始化堆 */
// 初始化小堆
// 初始化
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大堆(使用 lambda 表达式修改 Comparator
// 初始化堆(使用 lambda 表达式修改 Comparator 即可
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> { return b - a; });
System.out.println("\n以下测试样例为大顶堆");
/* 元素入堆 */
testPush(maxHeap, 1);
testPush(maxHeap, 3);
@ -45,7 +43,7 @@ public class heap {
int peek = maxHeap.peek();
System.out.format("\n堆顶元素为 %d\n", peek);
/* 元素出堆 */
/* 堆顶元素出堆 */
testPoll(maxHeap);
testPoll(maxHeap);
@ -56,5 +54,11 @@ public class heap {
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
System.out.format("\n堆是否为空 %b\n", isEmpty);
/* 输入列表并建堆 */
// 时间复杂度为 O(n) ,而非 O(nlogn)
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
System.out.println("\n输入 [1, 3, 2, 5, 4] ,建立小顶堆");
PrintUtil.printHeap(minHeap);
}
}

@ -18,13 +18,13 @@ class MaxHeap {
maxHeap = new ArrayList<>();
}
/* 构造函数,化 nums 所有元素 */
/* 构造函数,根据输入列表建堆 */
public MaxHeap(List<Integer> nums) {
// 将元素拷贝至堆中
// 所有元素入堆
maxHeap = new ArrayList<>(nums);
// 堆化除叶结点以外的其他所有结点
for (int i = parent(size() - 1); i >= 0; i--) {
heapify(i);
siftDown(i);
}
}
@ -40,7 +40,7 @@ class MaxHeap {
/* 获取父结点索引 */
private int parent(int i) {
return (i - 1) / 2;
return (i - 1) / 2; // 向下整除
}
/* 交换元素 */
@ -72,12 +72,20 @@ class MaxHeap {
// 添加结点
maxHeap.add(val);
// 从底至顶堆化
int i = size() - 1;
siftUp(size() - 1);
}
/* 从结点 i 开始,从底至顶堆化 */
private void siftUp(int i) {
while (true) {
// 获取结点 i 的父结点
int p = parent(i);
// 当“越过根结点”或“结点无需修复”时,结束堆化
if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
break;
// 交换两结点
swap(i, p);
// 循环向上堆化
i = p;
}
}
@ -87,26 +95,28 @@ class MaxHeap {
// 判空处理
if (isEmpty())
throw new EmptyStackException();
// 交换根结点与右下角(即最后一个)结点
// 交换根结点与最右叶结点(即交换首元素与尾元素)
swap(0, size() - 1);
// 删除结点
int val = maxHeap.remove(size() - 1);
// 从顶至底堆化
heapify(0);
siftDown(0);
// 返回堆顶元素
return val;
}
/* 从结点 i 开始,从顶至底堆化 */
private void heapify(int i) {
private void siftDown(int i) {
while (true) {
// 判断结点 i, l, r 中值最大的结点,记为 ma
int l = left(i), r = right(i), ma = i;
if (l < size() && maxHeap.get(l) > maxHeap.get(ma)) ma = l;
if (r < size() && maxHeap.get(r) > maxHeap.get(ma)) ma = r;
// 若结点 i 最大,则无需继续堆化,跳出
if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
ma = l;
if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
ma = r;
// 若结点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
if (ma == i) break;
// 交换结点 i 与结点 max
// 交换结点
swap(i, ma);
// 循环向下堆化
i = ma;
@ -124,26 +134,24 @@ class MaxHeap {
public class my_heap {
public static void testPush(MaxHeap maxHeap, int val) {
// 元素入堆
maxHeap.push(val);
maxHeap.push(val); // 元素入堆
System.out.format("\n添加元素 %d 后\n", val);
maxHeap.print();
}
public static void testPoll(MaxHeap maxHeap) {
// 元素出堆
int val = maxHeap.poll();
int val = maxHeap.poll(); // 堆顶元素出堆
System.out.format("\n出堆元素为 %d\n", val);
maxHeap.print();
}
public static void main(String[] args) {
/* 初始化堆 */
// 初始化大堆
// 初始化
MaxHeap maxHeap = new MaxHeap();
System.out.println("\n以下测试样例为大顶堆");
/* 元素入堆 */
testPush(maxHeap, 1);
testPush(maxHeap, 3);
@ -155,7 +163,7 @@ public class my_heap {
int peek = maxHeap.peek();
System.out.format("\n堆顶元素为 %d\n", peek);
/* 元素出堆 */
/* 堆顶元素出堆 */
testPoll(maxHeap);
testPoll(maxHeap);
@ -166,5 +174,10 @@ public class my_heap {
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
System.out.format("\n堆是否为空 %b\n", isEmpty);
/* 将输入列表堆化 */
maxHeap = new MaxHeap(Arrays.asList(1, 3, 2, 5, 4));
System.out.println("\n输入 [1, 3, 2, 5, 4] ,建立大顶堆");
maxHeap.print();
}
}

@ -15,7 +15,7 @@
值得说明的是,多数编程语言提供的是「优先队列 Priority Queue」其是一种抽象数据结构**定义为具有出队优先级的队列**。
而恰好,堆的定义与优先队列的操作逻辑完全吻合,大顶堆就是一个元素从大到小出队的优先队列。从使用角度看,我们可以将「优先队列」和「堆」理解为等价的数据结构,下文将统一使用 “堆” 这个名称
而恰好,堆的定义与优先队列的操作逻辑完全吻合,大顶堆就是一个元素从大到小出队的优先队列。从使用角度看,我们可以将「优先队列」和「堆」理解为等价的数据结构。因此,本文与代码对两者不做特别区分,统一使用「堆」来命名
堆的常用操作见下表(方法命名以 Java 为例)。
@ -23,32 +23,236 @@
<div class="center-table" markdown>
| 方法 | 描述 |
| --------- | -------------------------------------------- |
| add() | 元素入堆 |
| poll() | 堆顶元素出堆 |
| peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) |
| size() | 获取堆的元素数量 |
| isEmpty() | 判断堆是否为空 |
| 方法 | 描述 | 时间复杂度 |
| --------- | -------------------------------------------- | ----------- |
| add() | 元素入堆 | $O(\log n)$ |
| poll() | 堆顶元素出堆 | $O(\log n)$ |
| peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | $O(1)$ |
| size() | 获取堆的元素数量 | $O(1)$ |
| isEmpty() | 判断堆是否为空 | $O(1)$ |
</div>
我们可以直接使用编程语言提供的堆类(或优先队列类)。
```java
/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> { return b - a; });
/* 元素入堆 */
maxHeap.add(1);
maxHeap.add(3);
maxHeap.add(2);
maxHeap.add(5);
maxHeap.add(4);
/* 获取堆顶元素 */
int peek = maxHeap.peek();
/* 堆顶元素出堆 */
int val = heap.poll();
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
/* 输入列表并建堆 */
// 时间复杂度为 O(n) ,而非 O(nlogn)
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
```
## 堆的实现
!!! tip
下文使用「大顶堆」来举例,「小顶堆」的用法与实现可以简单地将所有 $>$ ($<$) 替换为 $<$ ($>$) 即可。
下文使用「大顶堆」来举例,将所有 $>$ ($<$) 替换为 $<$ ($>$) 即可实现「小顶堆」。
### 堆的存储与表示
在二叉树章节我们学过,「完全二叉树」非常适合使用「数组」来表示,而堆恰好是一颗完全二叉树,因而我们一般使用「数组」来存储「堆」。
**二叉树指针**。使用数组表示二叉树时,数组元素都代表结点值,索引代表结点在二叉树中的位置,**结点指针通过索引映射公式来实现**。具体地,给定索引 $i$ ,那么其左子结点索引为 $2i + 1$ 、右子结点索引为 $2i + 2$ 、父结点索引为 $(i - 1) / 2$ (向下整除)。当索引越界时,代表空结点或结点不存在。我们将以上映射公式封装成函数,以便使用。
(图)
```java
// 使用列表而非数组,这样无需考虑扩容问题
List<Integer> maxHeap;
/* 构造函数,建立空堆 */
public MaxHeap() {
maxHeap = new ArrayList<>();
}
我们一般使用「数组」来存储「堆」,这是因为完全二叉树非常适合用数组来表示(在二叉树章节有详细解释)。
/* 获取左子结点索引 */
int left(int i) {
return 2 * i + 1;
}
/* 获取右子结点索引 */
int right(int i) {
return 2 * i + 2;
}
/* 获取父结点索引 */
int parent(int i) {
return (i - 1) / 2; // 向下整除
}
```
### 访问堆顶元素
堆顶元素是二叉树的根结点,即列表首元素。
```java
/* 访问堆顶元素 */
public int peek() {
return maxHeap.get(0);
}
```
### 元素入堆
给定元素 `val` ,我们先将其添加到堆的末尾。由于 `val` 可能大于其它元素,此时堆的性质可能被破坏了,我们需要修复从插入结点到根结点这条路径上的各个结点,该操作被称为「堆化 Heapify」。
考虑从入堆结点开始,**从底至顶执行堆化**。具体地,比较插入结点与其父结点的值,若插入结点更大则将它们交换;并循环以上操作,从底至顶地修复堆中的各个结点;直至越过根结点时结束,或当遇到无需交换的结点时提前结束。
设堆长度为 $n$ **元素入堆操作的时间复杂度为 $O(\log n)$** 。这是因为树的高度为 $O(\log n)$ ,因此堆化操作的循环轮数最多为 $O(\log n)$ 。
(图)
```java
/* 元素入堆 */
void push(int val) {
// 添加结点
maxHeap.add(val);
// 从底至顶堆化
siftUp(size() - 1);
}
/* 从结点 i 开始,从底至顶堆化 */
void siftUp(int i) {
while (true) {
// 获取结点 i 的父结点
int p = parent(i);
// 若“越过根结点”或“结点无需修复”,则结束堆化
if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))
break;
// 交换两结点
swap(i, p);
// 循环向上堆化
i = p;
}
}
```
### 堆顶元素出堆
堆顶元素是二叉树根结点,即列表首元素,如果我们直接将首元素从列表中删除,则二叉树中所有结点都产生移位,这样后续使用堆化修复就很麻烦了。为了尽量减少二叉树结点变动,采取以下操作步骤:
1. 交换列表首元素与尾元素(即交换根结点与最右叶结点);
2. 将尾元素从列表中删除(此时堆顶元素已被删除);
3. 从根结点开始,从顶至底堆化;
顾名思义,**从顶至底堆化的操作方向与从底至顶堆化相反**,我们比较根结点的值与其两个子结点的值,将最大的子结点与根结点执行交换,并循环以上操作,直到越过叶结点时结束,或当遇到无需交换的结点时提前结束。
(图)
```java
/* 元素出堆 */
int poll() {
// 判空处理
if (isEmpty())
throw new EmptyStackException();
// 交换根结点与最右叶结点(即交换首元素与尾元素)
swap(0, size() - 1);
// 删除结点
int val = maxHeap.remove(size() - 1);
// 从顶至底堆化
siftDown(0);
// 返回堆顶元素
return val;
}
/* 从结点 i 开始,从顶至底堆化 */
void siftDown(int i) {
while (true) {
// 判断结点 i, l, r 中值最大的结点,记为 ma
int l = left(i), r = right(i), ma = i;
if (l < size() && maxHeap.get(l) > maxHeap.get(ma))
ma = l;
if (r < size() && maxHeap.get(r) > maxHeap.get(ma))
ma = r;
// 若“结点 i 最大”或“越过叶结点”,则结束堆化
if (ma == i) break;
// 交换两结点
swap(i, ma);
// 循环向下堆化
i = ma;
}
}
```
### 输入数据并建堆 *
给定一个列表,我们也可以将其建堆。最直接地,可以通过调用「元素入堆」方法,将列表元素依次入堆。元素入堆的时间复杂度为 $O(n)$ ,而平均长度为 $\frac{n}{2}$ ,因此该方法的总体时间复杂度为 $O(n \log n)$ 。
然而,存在一种更加优雅的建堆方法。设结点数量为 $n$ ,我们先将列表所有元素原封不动添加进堆,**然后迭代地对各个结点执行「从顶至底堆化」**。当然,**无需对叶结点执行堆化,**因为其没有子结点。
```java
/* 构造函数,根据输入列表建堆 */
public MaxHeap(List<Integer> nums) {
// 将列表元素原封不动添加进堆
maxHeap = new ArrayList<>(nums);
// 堆化除叶结点以外的其他所有结点
for (int i = parent(size() - 1); i >= 0; i--) {
siftDown(i);
}
}
```
!!! tip
完全二叉树的叶结点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。
那么,第二种建堆方法的时间复杂度时多少呢?我们来做一下简单推算。叶结点和需要堆化结点的数量各占约一半,即为 $O(n)$ ,二叉树高度为 $O(\log n)$ ,可得时间复杂度为 $O(n \log n)$ 。该估算结果仍不够准确,因为我们没有考虑到二叉树“底层结点远多于顶层结点”的性质。
设二叉树(即堆)结点数量为 $n$ ,树高度为 $h$ 。如下图所示,我们将各层的“结点数量 $\times$ 子树高度”进行求和,即可得到准确的操作数量。
$$
S = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
$$
(图)
求解上式需要借助中学的数列知识,先对 $S$ 乘以 $2$ ,可得
$$
\begin{aligned}
S & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \\
2S & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \\
\end{aligned}
$$
令下式 $2S$ 与上式 $S$ 错位相减,易得
$$
2S - S = S = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
$$
观察发现,$S$ 是一个等比数列,可直接借助公式求和。并且,对于高度为 $h$ 的完全二叉树,结点数量范围为 $n \in [2^h, 2^{h+1} - 1]$ ,复杂度为 $n = O(n) = O(2^h)$。
$$
\begin{aligned}
S & = 2 \frac{1 - 2^h}{1 - 2} - h \\
& = 2^{h+1} - h \\
& = O(2^h) = O(n)
\end{aligned}
$$
以上推算表明,输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效。
## 堆常见应用
- 优先队列。
- 堆排序。
- 获取数据 Top K 大(小)元素。
- 优先队列。堆常作为实现优先队列的首选数据结构。
- 堆排序。根据
- 获取数据中最大的 $k$ 个元素。这即是一道经典的算法题目,也是一种实际应用

@ -18,16 +18,16 @@ comments: true
<div class="center-table" markdown>
| 方法 | 描述 |
| ------------ | ---------------- |
| offerFirst() | 将元素添加至队首 |
| offerLast() | 将元素添加至队尾 |
| pollFirst() | 删除队首元素 |
| pollLast() | 删除队尾元素 |
| peekFirst() | 访问队首元素 |
| peekLast() | 访问队尾元素 |
| size() | 获取队列的长度 |
| isEmpty() | 判断队列是否为空 |
| 方法 | 描述 | 时间复杂度 |
| ------------ | ---------------- | ---------- |
| offerFirst() | 将元素添加至队首 | $O(1)$ |
| offerLast() | 将元素添加至队尾 | $O(1)$ |
| pollFirst() | 删除队首元素 | $O(1)$ |
| pollLast() | 删除队尾元素 | $O(1)$ |
| peekFirst() | 访问队首元素 | $O(1)$ |
| peekLast() | 访问队尾元素 | $O(1)$ |
| size() | 获取队列的长度 | $O(1)$ |
| isEmpty() | 判断队列是否为空 | $O(1)$ |
</div>
@ -196,5 +196,5 @@ comments: true
=== "Swift"
```swift title="deque.swift"
```

@ -20,13 +20,13 @@ comments: true
<div class="center-table" markdown>
| 方法 | 描述 |
| --------- | ---------------------------- |
| offer() | 元素入队,即将元素添加至队尾 |
| poll() | 队首元素出队 |
| front() | 访问队首元素 |
| size() | 获取队列的长度 |
| isEmpty() | 判断队列是否为空 |
| 方法 | 描述 | 时间复杂度 |
| --------- | ---------------------------- | ---------- |
| offer() | 元素入队,即将元素添加至队尾 | $O(1)$ |
| poll() | 队首元素出队 | $O(1)$ |
| front() | 访问队首元素 | $O(1)$ |
| size() | 获取队列的长度 | $O(1)$ |
| isEmpty() | 判断队列是否为空 | $O(1)$ |
</div>
@ -231,7 +231,7 @@ comments: true
=== "Swift"
```swift title="queue.swift"
```
## 队列实现
@ -621,7 +621,7 @@ comments: true
=== "Swift"
```swift title="linkedlist_queue.swift"
```
### 基于数组的实现
@ -1030,7 +1030,7 @@ comments: true
=== "Swift"
```swift title="array_queue.swift"
```
## 队列典型应用

@ -22,13 +22,13 @@ comments: true
<div class="center-table" markdown>
| 方法 | 描述 |
| --------- | ---------------------- |
| push() | 元素入栈(添加至栈顶) |
| pop() | 栈顶元素出栈 |
| peek() | 访问栈顶元素 |
| size() | 获取栈的长度 |
| isEmpty() | 判断栈是否为空 |
| 方法 | 描述 | 时间复杂度 |
| --------- | ---------------------- | ---------- |
| push() | 元素入栈(添加至栈顶) | $O(1)$ |
| pop() | 栈顶元素出栈 | $O(1)$ |
| peek() | 访问栈顶元素 | $O(1)$ |
| size() | 获取栈的长度 | $O(1)$ |
| isEmpty() | 判断栈是否为空 | $O(1)$ |
</div>
@ -231,7 +231,7 @@ comments: true
=== "Swift"
```swift title="stack.swift"
```
## 栈的实现
@ -600,7 +600,7 @@ comments: true
=== "Swift"
```swift title="linkedlist_stack.swift"
```
### 基于数组的实现
@ -885,7 +885,7 @@ comments: true
=== "Swift"
```swift title="array_stack.swift"
```
!!! tip

@ -15,4 +15,4 @@ comments: true
- 前序、中序、后序遍历是深度优先搜索,体现着“走到头、再回头继续”的回溯遍历方式,通常使用递归实现。
- 二叉搜索树是一种高效的元素查找数据结构,查找、插入、删除操作的时间复杂度皆为 $O(\log n)$ 。二叉搜索树退化为链表后,各项时间复杂度劣化至 $O(n)$ ,因此如何避免退化是非常重要的课题。
- AVL 树又称平衡二叉搜索树,其通过旋转操作,使得在不断插入与删除结点后,仍然可以保持二叉树的平衡(不退化)。
- AVL 树的旋转操作分为右旋、左旋、先右旋后左旋、先左旋后右旋。在插入或删除结点后AVL 树会从底顶地执行旋转操作,使树恢复平衡。
- AVL 树的旋转操作分为右旋、左旋、先右旋后左旋、先左旋后右旋。在插入或删除结点后AVL 树会从底顶地执行旋转操作,使树恢复平衡。

Loading…
Cancel
Save