Add the section of number encoding

and character encoding
pull/504/head
krahets 2 years ago
parent a60c7f148d
commit 7cfe6d7efe

@ -0,0 +1,125 @@
# 基本数据类型
谈及计算机中的数据我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织形式各异,但它们都由各种基本数据类型构成。
**基本数据类型是 CPU 可以直接进行运算的类型,在算法中直接被使用**。它包括:
- 整数类型 `byte` , `short` , `int` , `long`
- 浮点数类型 `float` , `double` ,用于表示小数;
- 字符类型 `char` ,用于表示各种语言的字母、标点符号、甚至表情符号等;
- 布尔类型 `bool` ,用于表示“是”与“否”判断;
**所有基本数据类型都以二进制的形式存储在计算机中**。在计算机中,我们将 $1$ 个二进制位称为 $1$ 比特,并规定 $1$ 字节byte由 $8$ 比特bits组成。基本数据类型的取值范围取决于其占用的空间大小例如
- 整数类型 `byte` 占用 $1$ byte = $8$ bits ,可以表示 $2^{8}$ 个不同的数字;
- 整数类型 `int` 占用 $4$ bytes = $32$ bits ,可以表示 $2^{32}$ 个数字;
下表列举了各种基本数据类型的占用空间、取值范围和默认值。此表格无需硬背,大致理解即可,需要时可以通过查表来回忆。
<div class="center-table" markdown>
| 类型 | 符号 | 占用空间 | 最小值 | 最大值 | 默认值 |
| ------ | -------- | ---------------- | ------------------------ | ----------------------- | -------------- |
| 整数 | `byte` | 1 byte | $-2^7$ ($-128$) | $2^7 - 1$ ($127$) | $0$ |
| | `short` | 2 bytes | $-2^{15}$ | $2^{15} - 1$ | $0$ |
| | `int` | 4 bytes | $-2^{31}$ | $2^{31} - 1$ | $0$ |
| | `long` | 8 bytes | $-2^{63}$ | $2^{63} - 1$ | $0$ |
| 浮点数 | `float` | 4 bytes | $1.175 \times 10^{-38}$ | $3.403 \times 10^{38}$ | $0.0 f$ |
| | `double` | 8 bytes | $2.225 \times 10^{-308}$ | $1.798 \times 10^{308}$ | $0.0$ |
| 字符 | `char` | 2 bytes / 1 byte | $0$ | $2^{16} - 1$ | $0$ |
| 布尔 | `bool` | 1 byte / 1 bit | $\text{false}$ | $\text{true}$ | $\text{false}$ |
</div>
那么,基本数据类型与数据结构之间有什么联系与区别呢?我们知道,数据结构是在计算机中组织与存储数据的方式。它的主语是“结构”,而非“数据”。如果想要表示“一排数字”,我们自然会想到使用数组。这是因为数组的线性结构可以表示数字的相邻关系和顺序关系,但至于存储的内容是整数 `int` 、小数 `float` 、还是字符 `char` ,则与“数据结构”无关。
换句话说,**基本数据类型提供了数据的“内容类型”,而数据结构提供了数据的“组织方式”**。如以下代码所示,我们可以使用不同基本数据类型来初始化数组。
=== "Java"
```java title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int[] numbers = new int[5];
float[] decimals = new float[5];
char[] characters = new char[5];
boolean[] booleans = new boolean[5];
```
=== "C++"
```cpp title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int numbers[5];
float decimals[5];
char characters[5];
bool booleans[5];
```
=== "Python"
```python title=""
# Python 的 list 可以自由存储各种基本数据类型和对象
list = [0, 0.0, 'a', False]
```
=== "Go"
```go title=""
// 使用多种「基本数据类型」来初始化「数组」
var numbers = [5]int{}
var decimals = [5]float64{}
var characters = [5]byte{}
var booleans = [5]bool{}
```
=== "JavaScript"
```javascript title=""
/* JavaScript 的数组可以自由存储各种基本数据类型和对象 */
const array = [0, 0.0, 'a', false];
```
=== "TypeScript"
```typescript title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
const numbers: number[] = [];
const characters: string[] = [];
const booleans: boolean[] = [];
```
=== "C"
```c title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int numbers[10];
float decimals[10];
char characters[10];
bool booleans[10];
```
=== "C#"
```csharp title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int[] numbers = new int[5];
float[] decimals = new float[5];
char[] characters = new char[5];
bool[] booleans = new bool[5];
```
=== "Swift"
```swift title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
let numbers = Array(repeating: Int(), count: 5)
let decimals = Array(repeating: Double(), count: 5)
let characters = Array(repeating: Character("a"), count: 5)
let booleans = Array(repeating: Bool(), count: 5)
```
=== "Zig"
```zig title=""
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 193 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

@ -0,0 +1,65 @@
# 字符集与编码
在计算机中,所有数据都是以二进制数的形式存储的,字符 `char` 也不例外。为了表示字符,我们需要建立一套「字符集」,规定每个字符和二进制数之间的一一对应关系。有了字符集之后,计算机就可以通过查表完成二进制数到字符的转换。
## ASCII 字符集
「ASCII 码」是最早出现的字符集,全称为“美国标准信息交换代码”。它使用 7 位二进制数(即一个字节的前 7 位)表示一个字符,最多能够表示 128 个不同的字符。这包括英文字母的大小写、数字 0-9 、一些标点符号,以及一些控制字符(如换行符和制表符)。
![ASCII 码](character_encoding.assets/ascii_table.png)
然而ASCII 码仅局限于表示英文。随着计算机的全球化一种能够表示更多语言的字符集「EASCII」应运而生。它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 256 个不同的字符。世界陆续诞生了一批适用于不同地区的 EASCII 字符集。这些字符集的前 128 个字符统一为 ASCII 码,后 128 个字符定义了不同语言的字符。
## GBK 字符集
EASCII 码仍然无法满足许多语言的字符数量要求。例如,汉字大约有近十万个,光日常使用的就有几千个。为此,中国国家标准总局于 1980 年发布了「GB2312」字符集其收录了 6763 个汉字,基本满足了汉字的计算机处理需要。
然而GB2312 无法处理部分的罕见字和繁体字。之后在 GB2312 的基础上扩展得到了「GBK」字符集它共收录了 21886 个汉字。在 GBK 编码方案中ASCII 字符使用一个字节表示,汉字使用两个字节表示。
## Unicode 字符集
随着计算机的蓬勃发展,在世界范围内诞生了许多字符集与编码标准,而这带来了许多问题。一方面,这些字符集一般只定义了某种特定语言的字符,无法实现跨语言解析;另一方面,同一种语言也存在多种字符集,如果两台电脑安装的是不同的编码标准,则在信息传递时就会出现乱码。
那个时代的人们会想:如果推出一个足够完整的字符集,将世界范围内的所有语言和符号都纳入其中,不就可以解决跨语言环境和乱码问题了吗?在这种思考下,一个庞大的字符集 Unicode 应运而生。
「Unicode」的全称为“统一字符编码”理论上能容纳一百多万个字符。它致力于将全球范围内的字符纳入到统一的字符集之中提供一种通用的字符集来处理和显示各种语言文字减少因为编码标准不同而产生的乱码问题。
自 1991 年发布以来Unicode 不断扩充新的语言与字符。截止 2022 年 9 月Unicode 已经包含 149186 个字符,包括各种语言的字符、符号、甚至是表情符号等。在庞大的 Unicode 字符集中,常用的字符占用 2 字节,有些生僻的字符占 3 字节甚至 4 字节。
Unicode 是一种字符集标准,本质上是给每个字符分配一个编号(称为“码点”),**但它并没有规定在计算机中如何存储这些字符码点**。我们不禁会问:当多种长度的 Unicode 码点同时出现在同一个文本中时,系统如何解析字符?例如,给定一个长度为 2 字节的编码,系统如何确认它是一个 2 字节的字符还是两个 1 字节的字符?
**最直接的解决方案是将所有字符存储为等长的编码**。如下图所示“Hello”中的每个字符占用 1 字节,“算法”中的每个字符占用 2 字节。我们可以通过高位填 0 将“Hello 算法”中的所有字符都编码为 2 字节长度。这样系统就可以每隔 2 字节解析一个字符,恢复出这个短语的内容了。
![Unicode 编码示例](character_encoding.assets/unicode_hello_algo.png)
然而ASCII 码已经向我们证明,编码英文只需要 1 字节。若采用上述方案,英文文本占用空间的大小将会是 ASCII 编码下大小的 2 倍,非常浪费内存空间。因此,我们需要一种更加高效的 Unicode 编码方法。
## UTF-8 编码
随着互联网的发展UTF-8 成为国际上使用最广泛的 Unicode 编码方法。**它是一种可变长的编码**,使用 1 到 4 个字节来表示一个字符根据字符的复杂性而变。ASCII 字符只需要 1 个字节,拉丁字母和希腊字母需要 2 个字节,常用的中文字符需要 3 个字节,其他的一些生僻字符需要 4 个字节。UTF-8 的编码规则是:
- 对于长度为 1 字节的字符,将最高位设置为 0 、其余 7 位设置为 Unicode 码点。值得注意的是ASCII 字符在 Unicode 字符集中占据了前 128 个码点。也就是说,**UTF-8 编码可以向下兼容 ASCII 码**。这意味着我们可以使用 UTF-8 来解析年代久远的 ASCII 码文本。
- 对于长度为 $n$ 字节的字符(其中 $n > 1$),将首个字节的高 $n$ 位都设置为 $1$ 、第 $n + 1$ 位设置为 $0$ ;从第二个字节开始,将每个字节的高 2 位都设置为 $10$ ;其余所有位用于填充字符的 Unicode 码点。
下图展示了“Hello算法”对应的 UTF-8 编码。将最高 $n$ 位设置为 $1$ 比较容易理解,可以向系统指出字符的长度为 $n$ 。那么,为什么要将其余所有字节的高 2 位都设置为 $10$ 呢?实际上,这个 $10$ 能够起到校验符的作用,因为在 UTF-8 编码规则下,不可能有字符的最高两位是 $10$ 。这是因为长度为 1 字节的字符的最高一位是 $0$ 。假设系统从一个错误的字节开始解析文本,字节头部的 $10$ 能够帮助系统快速的判断出异常。
![UTF-8 编码示例](character_encoding.assets/utf-8_hello_algo.png)
除了 UTF-8 之外,常见的编码方式还包括 UTF-16 和 UTF-32 。它们为 Unicode 字符集提供了不同的编码方法。
- **UTF-16 编码**:使用 2 或 4 个字节来表示一个字符。所有的 ASCII 字符和很多常用的中文字符,都用 2 个字节表示。少数字符需要用到 4 个字节表示。
- **UTF-32 编码**:每个字符都使用 4 个字节。这意味着 UTF-32 会比 UTF-8 和 UTF-16 更占用空间,特别是对于主要使用 ASCII 字符的文本。
从存储空间的角度看,使用 UTF-8 表示英文字符非常高效,因为它仅需 1 个字节;使用 UTF-16 编码某些非英文字符(例如中文)会更加高效,因为它只需要 2 个字节,而 UTF-8 可能需要 3 个字节。从兼容性的角度看UTF-8 的通用性最佳,许多工具和库都优先支持 UTF-8 。
如下表所示,为各个编程语言的字符串默认编码方式。由于 UTF-16 和 UTF-32 属于等长的编码方法,因此编程语言可以直接计算字符串的长度,也可以快速地访问字符串中的任意字符。而如果使用 UTF-8 这种变长的编码方法,编程语言往往需要额外维护一个字符数组,才能实现高效的随机访问。
<div class="center-table" markdown>
| 编码 | 编程语言 |
| ------ | -------------------------------- |
| UTF-8 | Python, Go, Rust, Swift |
| UTF-16 | Java, C#, JavaScript, TypeScript |
| UTF-32 | / |
</div>

@ -15,11 +15,17 @@
## 物理结构:连续与离散 ## 物理结构:连续与离散
!!! note 在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。
如若阅读起来有困难,建议先阅读下一章“数组与链表”,然后再回头理解物理结构的含义 **在算法运行过程中,相关数据都存储在内存中**。下图展示了一个计算机内存条,其中每个黑色方块都包含一块内存空间。我们可以将内存想象成一个巨大的 Excel 表格,其中每个单元格都可以存储 1 byte 的数据,在算法运行时,所有数据都被存储在这些单元格中
**「物理结构」体现了数据在计算机内存中的存储方式**,可以分为数组的连续空间存储和链表的离散空间存储。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。 **系统通过「内存地址 Memory Location」来访问目标内存位置的数据**。计算机根据特定规则为表格中的每个单元格分配编号,确保每个内存空间都有唯一的内存地址。有了这些地址,程序便可以访问内存中的数据。
![内存条、内存空间、内存地址](classification_of_data_structure.assets/computer_memory_location.png)
内存是所有程序的共享资源,当内存被某个程序占用时,其他程序无法同时使用。**因此,在数据结构与算法的设计中,内存资源是一个重要的考虑因素**。例如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果运行的程序很多并且缺少大量连续的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。
**「物理结构」反映了数据在计算机内存中的存储方式**,可分为数组的连续空间存储和链表的离散空间存储。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。
![连续空间存储与离散空间存储](classification_of_data_structure.assets/classification_phisical_structure.png) ![连续空间存储与离散空间存储](classification_of_data_structure.assets/classification_phisical_structure.png)
@ -32,4 +38,4 @@
!!! tip !!! tip
数组与链表是其他所有数据结构的“底层积木”,建议读者投入更多时间深入了解这两种基本数据结构。 如若感觉理解物理结构有困难,建议先阅读下一章“数组与链表”,然后再回头理解物理结构的含义。数组与链表是其他所有数据结构的基石,建议你投入更多时间深入了解这两种基本数据结构。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 72 KiB

@ -1,211 +0,0 @@
# 数据与内存
## 基本数据类型
谈及计算机中的数据我们会想到文本、图片、视频、语音、3D 模型等各种形式。尽管这些数据的组织形式各异,但它们都由各种基本数据类型构成。
**「基本数据类型」是 CPU 可以直接进行运算的类型,在算法中直接被使用**。
- 「整数」按照不同的长度分为 byte, short, int, long 。在满足取值范围的前提下,我们应该尽量选取较短的整数类型,以减小内存空间占用;
- 「浮点数」表示小数,按长度分为 float, double ,选用规则与整数相同。
- 「字符」在计算机中以字符集形式保存char 的值实际上是数字,代表字符集中的编号,计算机通过字符集查表完成编号到字符的转换。
- 「布尔」代表逻辑中的“是”与“否”,其占用空间需根据编程语言确定。
<div class="center-table" markdown>
| 类别 | 符号 | 占用空间 | 取值范围 | 默认值 |
| ------ | ----------- | ----------------- | ---------------------------------------------- | -------------- |
| 整数 | byte | 1 byte | $-2^7$ ~ $2^7 - 1$ ( $-128$ ~ $127$ ) | $0$ |
| | short | 2 bytes | $-2^{15}$ ~ $2^{15} - 1$ | $0$ |
| | **int** | 4 bytes | $-2^{31}$ ~ $2^{31} - 1$ | $0$ |
| | long | 8 bytes | $-2^{63}$ ~ $2^{63} - 1$ | $0$ |
| 浮点数 | **float** | 4 bytes | $-3.4 \times 10^{38}$ ~ $3.4 \times 10^{38}$ | $0.0$ f |
| | double | 8 bytes | $-1.7 \times 10^{308}$ ~ $1.7 \times 10^{308}$ | $0.0$ |
| 字符 | **char** | 2 bytes / 1 byte | $0$ ~ $2^{16} - 1$ | $0$ |
| 布尔 | **bool** | 1 byte / 1 bit | $\text{true}$ 或 $\text{false}$ | $\text{false}$ |
</div>
以上表格中,加粗项在算法题中最为常用。此表格无需硬背,大致理解即可,需要时可以通过查表来回忆。
### 整数表示方式
整数的取值范围取决于变量使用的内存长度即字节或比特数。在计算机中1 字节 (byte) = 8 比特 (bit)1 比特即 1 个二进制位。以 int 类型为例:
1. 整数类型 int 占用 4 bytes = 32 bits ,可以表示 $2^{32}$ 个不同的数字;
2. 将最高位视为符号位,$0$ 代表正数,$1$ 代表负数,一共可表示 $2^{31}$ 个正数和 $2^{31}$ 个负数;
3. 当所有 bits 为 0 时代表数字 $0$ ,从零开始增大,可得最大正数为 $2^{31} - 1$
4. 剩余 $2^{31}$ 个数字全部用来表示负数,因此最小负数为 $-2^{31}$ ;具体细节涉及“源码、反码、补码”的相关知识,有兴趣的同学可以查阅学习;
其他整数类型 byte, short, long 的取值范围的计算方法与 int 类似,在此不再赘述。
### 浮点数表示方式 *
!!! note
本书中,标题后的 * 符号代表选读章节。如果你觉得理解困难,建议先跳过,等学完必读章节后再单独攻克。
细心的你可能会发现int 和 float 长度相同,都是 4 bytes但为什么 float 的取值范围远大于 int ?按理说 float 需要表示小数,取值范围应该变小才对。
实际上,这是因为浮点数 float 采用了不同的表示方式。根据 IEEE 754 标准32-bit 长度的 float 由以下部分构成:
- 符号位 $\mathrm{S}$ :占 1 bit
- 指数位 $\mathrm{E}$ :占 8 bits
- 分数位 $\mathrm{N}$ :占 24 bits ,其中 23 位显式存储;
设 32-bit 二进制数的第 $i$ 位为 $b_i$ ,则 float 值的计算方法定义为:
$$
\text { val } = (-1)^{b_{31}} \times 2^{\left(b_{30} b_{29} \ldots b_{23}\right)_2-127} \times\left(1 . b_{22} b_{21} \ldots b_0\right)_2
$$
转化到十进制下的计算公式为
$$
\text { val }=(-1)^{\mathrm{S}} \times 2^{\mathrm{E} -127} \times (1 + \mathrm{N})
$$
其中各项的取值范围为
$$
\begin{aligned}
\mathrm{S} \in & \{ 0, 1\} , \quad \mathrm{E} \in \{ 1, 2, \dots, 254 \} \newline
(1 + \mathrm{N}) = & (1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}) \subset [1, 2 - 2^{-23}]
\end{aligned}
$$
![IEEE 754 标准下的 float 表示方式](data_and_memory.assets/ieee_754_float.png)
以上图为例,$\mathrm{S} = 0$ $\mathrm{E} = 124$ $\mathrm{N} = 2^{-2} + 2^{-3} = 0.375$ ,易得
$$
\text { val } = (-1)^0 \times 2^{124 - 127} \times (1 + 0.375) = 0.171875
$$
现在我们可以回答最初的问题:**float 的表示方式包含指数位,导致其取值范围远大于 int** 。根据以上计算float 可表示的最大正数为 $2^{254 - 127} \times (2 - 2^{-23}) \approx 3.4 \times 10^{38}$ ,切换符号位便可得到最小负数。
**尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度**。整数类型 int 将全部 32 位用于表示数字,数字是均匀分布的;而由于指数位的存在,浮点数 float 的数值越大,相邻两个数字之间的差值就会趋向越大。
进一步地,指数位 $E = 0$ 和 $E = 255$ 具有特殊含义,**用于表示零、无穷大、$\mathrm{NaN}$ 等**。
<div class="center-table" markdown>
| 指数位 E | 分数位 $\mathrm{N} = 0$ | 分数位 $\mathrm{N} \ne 0$ | 计算公式 |
| ------------------ | ----------------------- | ---------------------------- | ------------------------------------------------------------ |
| $0$ | $\pm 0$ | 次正规数 | $(-1)^{\mathrm{S}} \times 2^{-126} \times (0.\mathrm{N})$ |
| $1, 2, \dots, 254$ | 正规数 | 正规数 | $(-1)^{\mathrm{S}} \times 2^{(\mathrm{E} -127)} \times (1.\mathrm{N})$ |
| $255$ | $\pm \infty$ | $\mathrm{NaN}$ | |
</div>
特别地,次正规数显著提升了浮点数的精度,这是因为:
- 最小正正规数为 $2^{-126} \approx 1.18 \times 10^{-38}$
- 最小正次正规数为 $2^{-126} \times 2^{-23} \approx 1.4 \times 10^{-45}$
双精度 double 也采用类似 float 的表示方法,此处不再详述。
### 基本数据类型与数据结构的关系
我们知道,**数据结构是在计算机中组织与存储数据的方式**,它的核心是“结构”,而非“数据”。如果想要表示“一排数字”,我们自然会想到使用「数组」数据结构。数组的存储方式可以表示数字的相邻关系、顺序关系,但至于具体存储的是整数 int 、小数 float 、还是字符 char ,则与“数据结构”无关。换句话说,基本数据类型提供了数据的“内容类型”,而数据结构提供了数据的“组织方式”。
=== "Java"
```java title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int[] numbers = new int[5];
float[] decimals = new float[5];
char[] characters = new char[5];
boolean[] booleans = new boolean[5];
```
=== "C++"
```cpp title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int numbers[5];
float decimals[5];
char characters[5];
bool booleans[5];
```
=== "Python"
```python title=""
# Python 的 list 可以自由存储各种基本数据类型和对象
list = [0, 0.0, 'a', False]
```
=== "Go"
```go title=""
// 使用多种「基本数据类型」来初始化「数组」
var numbers = [5]int{}
var decimals = [5]float64{}
var characters = [5]byte{}
var booleans = [5]bool{}
```
=== "JavaScript"
```javascript title=""
/* JavaScript 的数组可以自由存储各种基本数据类型和对象 */
const array = [0, 0.0, 'a', false];
```
=== "TypeScript"
```typescript title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
const numbers: number[] = [];
const characters: string[] = [];
const booleans: boolean[] = [];
```
=== "C"
```c title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int numbers[10];
float decimals[10];
char characters[10];
bool booleans[10];
```
=== "C#"
```csharp title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
int[] numbers = new int[5];
float[] decimals = new float[5];
char[] characters = new char[5];
bool[] booleans = new bool[5];
```
=== "Swift"
```swift title=""
/* 使用多种「基本数据类型」来初始化「数组」 */
let numbers = Array(repeating: Int(), count: 5)
let decimals = Array(repeating: Double(), count: 5)
let characters = Array(repeating: Character("a"), count: 5)
let booleans = Array(repeating: Bool(), count: 5)
```
=== "Zig"
```zig title=""
```
## 计算机内存
在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。
**在算法运行过程中,相关数据都存储在内存中**。下图展示了一个计算机内存条,其中每个黑色方块都包含一块内存空间。我们可以将内存想象成一个巨大的 Excel 表格,其中每个单元格都可以存储 1 byte 的数据,在算法运行时,所有数据都被存储在这些单元格中。
**系统通过「内存地址 Memory Location」来访问目标内存位置的数据**。计算机根据特定规则为表格中的每个单元格分配编号,确保每个内存空间都有唯一的内存地址。有了这些地址,程序便可以访问内存中的数据。
![内存条、内存空间、内存地址](data_and_memory.assets/computer_memory_location.png)
**在数据结构与算法的设计中,内存资源是一个重要的考虑因素**。内存是所有程序的共享资源,当内存被某个程序占用时,其他程序无法同时使用。我们需要根据剩余内存资源的实际情况来设计算法。例如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果运行的程序很多并且缺少大量连续的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

@ -0,0 +1,145 @@
# 数字编码 *
!!! note
在本书中,标题带有的 * 符号的是选读章节。如果你时间有限或感到理解困难,建议先跳过,等学完必读章节后再单独攻克。
## 原码、反码和补码
从上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个。例如,`byte` 的取值范围是 $[-128, 127]$ 。这个现象比较反直觉,它的内在原因涉及到原码、反码、补码的相关知识。在展开分析之前,我们首先给出三者的定义:
- **原码**:我们将数字的二进制表示的最高位视为符号位,其中 $0$ 表示正数,$1$ 表示负数,其余位表示数字的值。
- **反码**:正数的反码与其原码相同,负数的反码是对其原码除符号位外的所有位取反。
- **补码**:正数的补码与其原码相同,负数的补码是在其反码的基础上加 $1$ 。
![原码、反码与补码之间的相互转换](number_encoding.assets/1s_2s_complement.png)
显然,「原码」最为直观,**然而数字却是以「补码」的形式存储在计算机中的**。这是因为原码存在一些局限性。
一方面,**负数的原码不能直接用于运算**。例如,我们在原码下计算 $1 + (-2)$ ,得到的结果是 $-3$ ,这显然是不对的。
$$
\begin{aligned}
& 1 + (-2) \newline
& = 0000 \space 0001 + 1000 \space 0010 \newline
& = 1000 \space 0011 \newline
& = -3
\end{aligned}
$$
为了解决此问题,计算机引入了「反码」。例如,我们先将原码转换为反码,并在反码下计算 $1 + (-2)$ ,并将结果从反码转化回原码,则可得到正确结果 $-1$ 。
$$
\begin{aligned}
& 1 + (-2) \newline
& = 0000 \space 0001 \space \text{(原码)} + 1000 \space 0010 \space \text{(原码)} \newline
& = 0000 \space 0001 \space \text{(反码)} + 1111 \space 1101 \space \text{(反码)} \newline
& = 1111 \space 1110 \space \text{(反码)} \newline
& = 1000 \space 0001 \space \text{(原码)} \newline
& = -1
\end{aligned}
$$
另一方面,**数字零的原码有 $+0$ 和 $-0$ 两种表示方式**。这意味着数字零对应着两个不同的二进制编码,而这可能会带来歧义问题。例如,在条件判断中,如果没有区分正零和负零,可能会导致错误的判断结果。如果我们想要处理正零和负零歧义,则需要引入额外的判断操作,其可能会降低计算机的运算效率。
$$
+0 = 0000 \space 0000 \newline
-0 = 1000 \space 0000
$$
与原码一样,反码也存在正负零歧义问题。为此,计算机进一步引入了「补码」。那么,补码有什么作用呢?我们先来分析一下负零的补码的计算过程:
$$
\begin{aligned}
-0 = \space & 1000 \space 0000 \space \text{(原码)} \newline
= \space & 1111 \space 1111 \space \text{(反码)} \newline
= 1 \space & 0000 \space 0000 \space \text{(补码)} \newline
\end{aligned}
$$
在负零的反码基础上加 $1$ 会产生进位,而由于 byte 的长度只有 8 位,因此溢出到第 9 位的 $1$ 会被舍弃。**从而得到负零的补码为 $0000 \space 0000$ ,与正零的补码相同**。这意味着在补码表示中只存在一个零,从而解决了正负零歧义问题。
还剩余最后一个疑惑byte 的取值范围是 $[-128, 127]$ ,多出来的一个负数 $-128$ 是如何得到的呢?我们注意到,区间 $[-127, +127]$ 内的所有整数都有对应的原码、反码和补码,并且原码和补码之间是可以互相转换的。
然而,**补码 $1000 \space 0000$ 是一个例外,它并没有对应的原码**。根据转换方法,我们得到该补码的原码为 $0000 \space 0000$ 。这显然是矛盾的,因为该原码表示数字 $0$ ,它的补码应该是自身。计算机规定这个特殊的补码 $1000 \space 0000$ 代表 $-128$ 。实际上,$(-1) + (-127)$ 在补码下的计算结果就是 $-128$ 。
$$
\begin{aligned}
& (-127) + (-1) \newline
& = 1111 \space 1111 \space \text{(原码)} + 1000 \space 0001 \space \text{(原码)} \newline
& = 1000 \space 0000 \space \text{(反码)} + 1111 \space 1110 \space \text{(反码)} \newline
& = 1000 \space 0001 \space \text{(补码)} + 1111 \space 1111 \space \text{(补码)} \newline
& = 1000 \space 0000 \space \text{(补码)} \newline
& = -128
\end{aligned}
$$
你可能已经发现,上述的所有计算都是加法运算。这暗示着一个重要事实:**计算机内部的硬件电路主要是基于加法运算设计的**。这是因为加法运算相对于其他运算(比如乘法、除法和减法)来说,硬件实现起来更简单,更容易进行并行化处理,从而提高运算速度。
然而,这并不意味着计算机只能做加法。**通过将加法与一些基本逻辑运算结合,计算机能够实现各种其他的数学运算**。例如,计算减法 $a - b$ 可以转换为计算加法 $a + (-b)$ ;计算乘法和除法可以转换为计算多次加法或减法。
现在,我们可以总结出计算机使用补码的原因:基于补码表示,计算机可以用同样的电路和操作来处理正数和负数的加法,不需要设计特殊的硬件电路来处理减法,并且无需特别处理正负零的歧义问题。这大大简化了硬件设计,并提高了运算效率。
补码的设计非常精妙,由于篇幅关系我们先介绍到这里。建议有兴趣的读者进一步深度了解。
## 浮点数编码
细心的你可能会发现:`int` 和 `float` 长度相同,都是 4 bytes但为什么 `float` 的取值范围远大于 `int` ?这非常反直觉,因为按理说 `float` 需要表示小数,取值范围应该变小才对。
实际上,这是因为浮点数 `float` 采用了不同的表示方式。根据 IEEE 754 标准32-bit 长度的 `float` 由以下部分构成:
- 符号位 $\mathrm{S}$ :占 1 bit
- 指数位 $\mathrm{E}$ :占 8 bits
- 分数位 $\mathrm{N}$ :占 24 bits ,其中 23 位显式存储;
设 32-bit 二进制数的第 $i$ 位为 $b_i$ ,则 `float` 值的计算方法定义为:
$$
\text { val } = (-1)^{b_{31}} \times 2^{\left(b_{30} b_{29} \ldots b_{23}\right)_2-127} \times\left(1 . b_{22} b_{21} \ldots b_0\right)_2
$$
转化到十进制下的计算公式为
$$
\text { val }=(-1)^{\mathrm{S}} \times 2^{\mathrm{E} -127} \times (1 + \mathrm{N})
$$
其中各项的取值范围为
$$
\begin{aligned}
\mathrm{S} \in & \{ 0, 1\} , \quad \mathrm{E} \in \{ 1, 2, \dots, 254 \} \newline
(1 + \mathrm{N}) = & (1 + \sum_{i=1}^{23} b_{23-i} 2^{-i}) \subset [1, 2 - 2^{-23}]
\end{aligned}
$$
![IEEE 754 标准下的 float 表示方式](number_encoding.assets/ieee_754_float.png)
以上图为例,$\mathrm{S} = 0$ $\mathrm{E} = 124$ $\mathrm{N} = 2^{-2} + 2^{-3} = 0.375$ ,易得
$$
\text { val } = (-1)^0 \times 2^{124 - 127} \times (1 + 0.375) = 0.171875
$$
现在我们可以回答最初的问题:**`float` 的表示方式包含指数位,导致其取值范围远大于 `int`** `。根据以上计算float` 可表示的最大正数为 $2^{254 - 127} \times (2 - 2^{-23}) \approx 3.4 \times 10^{38}$ ,切换符号位便可得到最小负数。
**尽管浮点数 `float` 扩展了取值范围,但其副作用是牺牲了精度**。整数类型 `int` 将全部 32 位用于表示数字,数字是均匀分布的;而由于指数位的存在,浮点数 `float` 的数值越大,相邻两个数字之间的差值就会趋向越大。
进一步地,指数位 $E = 0$ 和 $E = 255$ 具有特殊含义,**用于表示零、无穷大、$\mathrm{NaN}$ 等**。
<div class="center-table" markdown>
| 指数位 E | 分数位 $\mathrm{N} = 0$ | 分数位 $\mathrm{N} \ne 0$ | 计算公式 |
| ------------------ | ----------------------- | ------------------------- | ---------------------------------------------------------------------- |
| $0$ | $\pm 0$ | 次正规数 | $(-1)^{\mathrm{S}} \times 2^{-126} \times (0.\mathrm{N})$ |
| $1, 2, \dots, 254$ | 正规数 | 正规数 | $(-1)^{\mathrm{S}} \times 2^{(\mathrm{E} -127)} \times (1.\mathrm{N})$ |
| $255$ | $\pm \infty$ | $\mathrm{NaN}$ | |
</div>
特别地,次正规数显著提升了浮点数的精度,这是因为:
- 最小正正规数为 $2^{-126} \approx 1.18 \times 10^{-38}$
- 最小正次正规数为 $2^{-126} \times 2^{-23} \approx 1.4 \times 10^{-45}$
双精度 `double` 也采用类似 `float` 的表示方法,此处不再详述。

@ -1,7 +1,14 @@
# 小结 # 小结
- 计算机中的基本数据类型包括整数 byte, short, int, long 、浮点数 float, double 、字符 char 和布尔 boolean ,它们的取值范围取决于占用空间大小和表示方式。
- 当程序运行时,数据被存储在计算机内存中。每个内存空间都拥有对应的内存地址,程序通过这些内存地址访问数据。
- 数据结构可以从逻辑结构和物理结构两个角度进行分类。逻辑结构描述了数据元素之间的逻辑关系,而物理结构描述了数据在计算机内存中的存储方式。 - 数据结构可以从逻辑结构和物理结构两个角度进行分类。逻辑结构描述了数据元素之间的逻辑关系,而物理结构描述了数据在计算机内存中的存储方式。
- 常见的逻辑结构包括线性、树状和网状等。通常我们根据逻辑结构将数据结构分为线性(数组、链表、栈、队列)和非线性(树、图、堆)两种。哈希表的实现可能同时包含线性和非线性结构。 - 常见的逻辑结构包括线性、树状和网状等。通常我们根据逻辑结构将数据结构分为线性(数组、链表、栈、队列)和非线性(树、图、堆)两种。哈希表的实现可能同时包含线性和非线性结构。
- 当程序运行时,数据被存储在计算机内存中。每个内存空间都拥有对应的内存地址,程序通过这些内存地址访问数据。
- 物理结构主要分为连续空间存储(数组)和离散空间存储(链表)。所有数据结构都是由数组、链表或两者的组合实现的。 - 物理结构主要分为连续空间存储(数组)和离散空间存储(链表)。所有数据结构都是由数组、链表或两者的组合实现的。
- 计算机中的基本数据类型包括整数 byte, short, int, long 、浮点数 float, double 、字符 char 和布尔 boolean 。它们的取值范围取决于占用空间大小和表示方式。
- 整数的原码的最高位是符号位,其余位是数字的值。数字的原码、反码和补码是可以相互转换的。
- 整数在计算机中是以补码的形式存储的。在补码表示下,计算机可以对正数和负数的加法一视同仁,不需要为减法操作单独设计特殊的硬件电路,并且不存在正负零歧义的问题。
- 浮点数的编码由 1 位符号位、8 位指数位和 23 位分数为构成。由于存在指数位,浮点数的取值范围远大于整数。
- ASCII 码是最早出现的英文字符集,长度为 1 字节,共收录 127 个字符。GBK 字符集是常用的中文字符集,共收录两万多个汉字。
- Unicode 致力于提供一个统一的字符集标准,其包含世界范围内的各种字符,从而解决由于字符编码不同导致的乱码问题。
- UTF-8 是最受欢迎的 Unicode 编码方法,通用性非常好。它是一种变长的编码方法,具有很好的扩展性,有效提升了存储空间的使用效率。
- UTF-16 和 UTF-32 是等长的编码方法。在编码中文时UTF-16 比 UTF-8 的占用空间更小。Java, C# 等编程语言默认使用 UTF-16 编码。

@ -137,10 +137,12 @@ nav:
- 2.2. &nbsp; 时间复杂度: chapter_computational_complexity/time_complexity.md - 2.2. &nbsp; 时间复杂度: chapter_computational_complexity/time_complexity.md
- 2.3. &nbsp; 空间复杂度: chapter_computational_complexity/space_complexity.md - 2.3. &nbsp; 空间复杂度: chapter_computational_complexity/space_complexity.md
- 2.4. &nbsp; 小结: chapter_computational_complexity/summary.md - 2.4. &nbsp; 小结: chapter_computational_complexity/summary.md
- 3. &nbsp; &nbsp; 数据结构简介: - 3. &nbsp; &nbsp; 数据结构与数据:
- 3.1. &nbsp; 数据与内存: chapter_data_structure/data_and_memory.md - 3.1. &nbsp; 数据结构分类: chapter_data_structure/classification_of_data_structure.md
- 3.2. &nbsp; 数据结构分类: chapter_data_structure/classification_of_data_structure.md - 3.2. &nbsp; 基本数据类型: chapter_data_structure/basic_data_types.md
- 3.3. &nbsp; 小结: chapter_data_structure/summary.md - 3.3. &nbsp; 数字编码 *: chapter_data_structure/number_encoding.md
- 3.4. &nbsp; 字符编码 *: chapter_data_structure/character_encoding.md
- 3.5. &nbsp; 小结: chapter_data_structure/summary.md
- 4. &nbsp; &nbsp; 数组与链表: - 4. &nbsp; &nbsp; 数组与链表:
- 4.1. &nbsp; 数组: chapter_array_and_linkedlist/array.md - 4.1. &nbsp; 数组: chapter_array_and_linkedlist/array.md
- 4.2. &nbsp; 链表: chapter_array_and_linkedlist/linked_list.md - 4.2. &nbsp; 链表: chapter_array_and_linkedlist/linked_list.md

Loading…
Cancel
Save