|
|
|
@ -16,11 +16,7 @@ fn backtrack(
|
|
|
|
|
) {
|
|
|
|
|
// 当放置完所有行时,记录解
|
|
|
|
|
if row == n {
|
|
|
|
|
let mut copy_state: Vec<Vec<String>> = Vec::new();
|
|
|
|
|
for s_row in state.clone() {
|
|
|
|
|
copy_state.push(s_row);
|
|
|
|
|
}
|
|
|
|
|
res.push(copy_state);
|
|
|
|
|
res.push(state.clone());
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
// 遍历所有列
|
|
|
|
@ -31,12 +27,12 @@ fn backtrack(
|
|
|
|
|
// 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后
|
|
|
|
|
if !cols[col] && !diags1[diag1] && !diags2[diag2] {
|
|
|
|
|
// 尝试:将皇后放置在该格子
|
|
|
|
|
state.get_mut(row).unwrap()[col] = "Q".into();
|
|
|
|
|
state[row][col] = "Q".into();
|
|
|
|
|
(cols[col], diags1[diag1], diags2[diag2]) = (true, true, true);
|
|
|
|
|
// 放置下一行
|
|
|
|
|
backtrack(row + 1, n, state, res, cols, diags1, diags2);
|
|
|
|
|
// 回退:将该格子恢复为空位
|
|
|
|
|
state.get_mut(row).unwrap()[col] = "#".into();
|
|
|
|
|
state[row][col] = "#".into();
|
|
|
|
|
(cols[col], diags1[diag1], diags2[diag2]) = (false, false, false);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -45,14 +41,7 @@ fn backtrack(
|
|
|
|
|
/* 求解 n 皇后 */
|
|
|
|
|
fn n_queens(n: usize) -> Vec<Vec<Vec<String>>> {
|
|
|
|
|
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
|
|
|
|
|
let mut state: Vec<Vec<String>> = Vec::new();
|
|
|
|
|
for _ in 0..n {
|
|
|
|
|
let mut row: Vec<String> = Vec::new();
|
|
|
|
|
for _ in 0..n {
|
|
|
|
|
row.push("#".into());
|
|
|
|
|
}
|
|
|
|
|
state.push(row);
|
|
|
|
|
}
|
|
|
|
|
let mut state: Vec<Vec<String>> = vec![vec!["#".to_string(); n]; n];
|
|
|
|
|
let mut cols = vec![false; n]; // 记录列是否有皇后
|
|
|
|
|
let mut diags1 = vec![false; 2 * n - 1]; // 记录主对角线上是否有皇后
|
|
|
|
|
let mut diags2 = vec![false; 2 * n - 1]; // 记录次对角线上是否有皇后
|
|
|
|
|