Add Java codes, and license.

pull/8/head
krahets 2 years ago
parent e604470259
commit 8f8f6319af

3
.gitignore vendored

@ -7,5 +7,6 @@
# mkdocs files
overrides/
site/
codes/
codes/python
codes/cpp
docs/chapter_*

@ -0,0 +1,100 @@
package chapter_array_and_linkedlist;
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
public class array {
/* 随机返回一个数组元素 */
static int randomAccess(int[] nums) {
// 在区间 [0, nums.length) 中随机抽取一个数字
int randomIndex = ThreadLocalRandom.current().
nextInt(0, nums.length);
// 获取并返回随机元素
int randomNum = nums[randomIndex];
return randomNum;
}
/* 扩展数组长度 */
static int[] extend(int[] nums, int enlarge) {
// 初始化一个扩展长度后的数组
int[] res = new int[nums.length + enlarge];
// 将原数组中的所有元素复制到新数组
for (int i = 0; i < nums.length; i++) {
res[i] = nums[i];
}
// 返回扩展后的新数组
return res;
}
/* 在数组的索引 index 处插入元素 num */
static void insert(int[] nums, int num, int index) {
// 把索引 index 以及之后的所有元素向后移动一位
for (int i = nums.length - 1; i >= index; i--) {
nums[i] = nums[i - 1];
}
// 将 num 赋给 index 处元素
nums[index] = num;
}
/* 删除索引 index 处元素 */
static void remove(int[] nums, int index) {
// 把索引 index 之后的所有元素向前移动一位
for (int i = index; i < nums.length - 1; i++) {
nums[i] = nums[i + 1];
}
}
/* 遍历数组 */
static void traverse(int[] nums) {
int count = 0;
// 通过索引遍历数组
for (int i = 0; i < nums.length; i++) {
count++;
}
// 直接遍历数组
for (int num : nums) {
count++;
}
}
/* 在数组中查找指定元素 */
static int find(int[] nums, int target) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] == target)
return i;
}
return -1;
}
/* Driver Code */
public static void main(String[] args) {
/* 初始化数组 */
int[] arr = new int[5];
System.out.println("数组 arr = " + Arrays.toString(arr));
int[] nums = { 1, 3, 2, 5, 4 };
System.out.println("数组 nums = " + Arrays.toString(nums));
/* 随机访问 */
int randomNum = randomAccess(nums);
System.out.println("在 nums 中获取随机元素 " + randomNum);
/* 长度扩展 */
nums = extend(nums, 3);
System.out.println("将数组长度扩展至 8 ,得到 nums = " + Arrays.toString(nums));
/* 插入元素 */
insert(nums, 6, 3);
System.out.println("在索引 3 处插入数字 6 ,得到 nums = " + Arrays.toString(nums));
/* 删除元素 */
remove(nums, 2);
System.out.println("删除索引 2 处的元素,得到 nums = " + Arrays.toString(nums));
/* 遍历数组 */
traverse(nums);
/* 查找元素 */
int index = find(nums, 3);
System.out.println("在 nums 中查找元素 3 ,得到索引 = " + index);
}
}

@ -0,0 +1,80 @@
package chapter_array_and_linkedlist;
import include.*;
public class linked_list {
/* 在链表的结点 n0 之后插入结点 P */
static void insert(ListNode n0, ListNode P) {
ListNode n1 = n0.next;
n0.next = P;
P.next = n1;
}
/* 删除链表的结点 n0 之后的首个结点 */
static void remove(ListNode n0) {
if (n0.next == null)
return;
// n0 -> P -> n1
ListNode P = n0.next;
ListNode n1 = P.next;
n0.next = n1;
}
/* 访问链表中索引为 index 的结点 */
static ListNode access(ListNode head, int index) {
for (int i = 0; i < index; i++) {
head = head.next;
if (head == null)
return null;
}
return head;
}
/* 在链表中查找值为 target 的首个结点 */
static int find(ListNode head, int target) {
int index = 0;
while (head != null) {
if (head.val == target)
return index;
head = head.next;
index++;
}
return -1;
}
/* Driver Code */
public static void main(String[] args) {
/* 初始化链表 */
// 初始化各个结点
ListNode n0 = new ListNode(1);
ListNode n1 = new ListNode(3);
ListNode n2 = new ListNode(2);
ListNode n3 = new ListNode(5);
ListNode n4 = new ListNode(4);
// 构建引用指向
n0.next = n1;
n1.next = n2;
n2.next = n3;
n3.next = n4;
System.out.println("初始化的链表为");
PrintUtil.printLinkedList(n0);
/* 插入结点 */
insert(n0, new ListNode(0));
System.out.println("插入结点后的链表为");
PrintUtil.printLinkedList(n0);
/* 删除结点 */
remove(n0);
System.out.println("删除结点后的链表为");
PrintUtil.printLinkedList(n0);
/* 访问结点 */
ListNode node = access(n0, 3);
System.out.println("链表中索引 3 处的结点的值 = " + node.val);
/* 查找结点 */
int index = find(n0, 2);
System.out.println("链表中值为 2 的结点的索引 = " + index);
}
}

@ -0,0 +1,62 @@
package chapter_array_and_linkedlist;
import java.util.*;
public class list {
public static void main(String[] args) {
/* 初始化列表 */
// 注意数组的元素类型是 int[] 的包装类 Integer[]
Integer[] numbers = new Integer[] { 1, 3, 2, 5, 4 };
List<Integer> list = new ArrayList<>(Arrays.asList(numbers));
System.out.println("列表 list = " + Arrays.toString(list.toArray()));
/* 访问元素 */
int num = list.get(1);
System.out.println("访问索引 1 处的元素,得到 num = " + num);
/* 更新元素 */
list.set(1, 0);
System.out.println("将索引 1 处的元素更新为 0 ,得到 list = " + Arrays.toString(list.toArray()));
/* 清空列表 */
list.clear();
System.out.println("清空列表后 list = " + Arrays.toString(list.toArray()));
/* 尾部添加元素 */
list.add(1);
list.add(3);
list.add(2);
list.add(5);
list.add(4);
System.out.println("添加元素后 list = " + Arrays.toString(list.toArray()));
/* 中间插入元素 */
list.add(3, 6);
System.out.println("在索引 3 处插入数字 6 ,得到 list = " + Arrays.toString(list.toArray()));
/* 删除元素 */
list.remove(3);
System.out.println("删除索引 3 处的元素,得到 list = " + Arrays.toString(list.toArray()));
/* 通过索引遍历列表 */
int count = 0;
for (int i = 0; i < list.size(); i++) {
count++;
}
/* 直接遍历列表元素 */
count = 0;
for (int n : list) {
count++;
}
/* 拼接两个列表 */
List<Integer> list1 = new ArrayList<>(Arrays.asList(new Integer[] { 6, 8, 7, 10, 9 }));
list.addAll(list1);
System.out.println("将列表 list1 拼接到 list 之后,得到 list = " + Arrays.toString(list.toArray()));
/* 排序列表 */
Collections.sort(list);
System.out.println("排序列表后 list = " + Arrays.toString(list.toArray()));
}
}

@ -0,0 +1,136 @@
package chapter_array_and_linkedlist;
import java.util.*;
/* 列表类简易实现 */
class MyList {
int[] nums; // 数组(存储列表元素)
int initialCapacity = 10; // 列表初始容量
int size = 0; // 列表长度(即当前元素数量)
int extendRatio = 2; // 每次列表扩容的倍数
/* 构造函数 */
public MyList() {
nums = new int[initialCapacity];
}
/* 获取列表容量 */
public int size() {
return size;
}
/* 获取列表长度(即当前元素数量) */
public int capacity() {
return nums.length;
}
/* 访问元素 */
public int get(int index) {
// 索引如果越界则抛出异常,下同
if (index >= size)
throw new IndexOutOfBoundsException("索引越界");
return nums[index];
}
/* 更新元素 */
public void set(int index, int num) {
if (index >= size)
throw new IndexOutOfBoundsException("索引越界");
nums[index] = num;
}
/* 尾部添加元素 */
public void add(int num) {
// 元素数量超出容量时,触发扩容机制
if (size == nums.length)
extendCapacity();
nums[size] = num;
// 更新元素数量
size++;
}
/* 中间插入元素 */
public void add(int index, int num) {
if (index >= size)
throw new IndexOutOfBoundsException("索引越界");
// 元素数量超出容量时,触发扩容机制
if (size == nums.length)
extendCapacity();
// 索引 i 以及之后的元素都向后移动一位
for (int j = size - 1; j >= index; j--) {
nums[j + 1] = nums[j];
}
nums[index] = num;
// 更新元素数量
size++;
}
/* 删除元素 */
public void remove(int index) {
if (index >= size)
throw new IndexOutOfBoundsException("索引越界");
// 索引 i 之后的元素都向前移动一位
for (int j = index; j < size - 1; j++) {
nums[j] = nums[j + 1];
}
// 更新元素数量
size--;
}
/* 列表扩容 */
public void extendCapacity() {
// 新建一个长度为 size 的数组,并将原数组拷贝到新数组
nums = Arrays.copyOf(nums, nums.length * extendRatio);
}
/* 将列表转换为数组 */
public int[] toArray() {
int size = size();
// 仅转换有效长度范围内的列表元素
int[] nums = new int[size];
for (int i = 0; i < size; i++) {
nums[i] = get(i);
}
return nums;
}
}
public class my_list {
/* Driver Code */
public static void main(String[] args) {
/* 初始化列表 */
MyList list = new MyList();
/* 尾部添加元素 */
list.add(1);
list.add(3);
list.add(2);
list.add(5);
list.add(4);
System.out.println("列表 list = " + Arrays.toString(list.toArray()) +
" ,容量 = " + list.capacity() + " ,长度 = " + list.size());
/* 中间插入元素 */
list.add(3, 6);
System.out.println("在索引 3 处插入数字 6 ,得到 list = " + Arrays.toString(list.toArray()));
/* 删除元素 */
list.remove(3);
System.out.println("删除索引 3 处的元素,得到 list = " + Arrays.toString(list.toArray()));
/* 访问元素 */
int num = list.get(1);
System.out.println("访问索引 1 处的元素,得到 num = " + num);
/* 更新元素 */
list.set(1, 0);
System.out.println("将索引 1 处的元素更新为 0 ,得到 list = " + Arrays.toString(list.toArray()));
/* 测试扩容机制 */
for (int i = 0; i < 10; i++) {
// 在 i = 5 时,列表长度将超出列表容量,此时触发扩容机制
list.add(i);
}
System.out.println("扩容后的列表 list = " + Arrays.toString(list.toArray()) +
" ,容量 = " + list.capacity() + " ,长度 = " + list.size());
}
}

@ -0,0 +1,100 @@
package chapter_computational_complexity.space_complexity;
import include.*;
import java.util.*;
public class space_complexity_types {
/* 函数 */
static int function() {
// do something
return 0;
}
/* 常数阶 */
static void constant(int n) {
// 常量、变量、对象占用 O(1) 空间
final int a = 0;
int b = 0;
int[] nums = new int[10000];
ListNode node = new ListNode(0);
// 循环中的变量占用 O(1) 空间
for (int i = 0; i < n; i++) {
int c = 0;
}
// 循环中的函数占用 O(1) 空间
for (int i = 0; i < n; i++) {
function();
}
}
/* 线性阶 */
static void linear(int n) {
// 长度为 n 的数组占用 O(n) 空间
int[] nums = new int[n];
// 长度为 n 的列表占用 O(n) 空间
List<ListNode> nodes = new ArrayList<>();
for (int i = 0; i < n; i++) {
nodes.add(new ListNode(i));
}
// 长度为 n 的哈希表占用 O(n) 空间
Map<Integer, String> map = new HashMap<>();
for (int i = 0; i < n; i++) {
map.put(i, String.valueOf(i));
}
}
/* 线性阶(递归实现) */
static void linearRecur(int n) {
System.out.println("递归 n = " + n);
if (n == 1) return;
linearRecur(n - 1);
}
/* 平方阶 */
static void quadratic(int n) {
// 矩阵占用 O(n^2) 空间
int numMatrix[][] = new int[n][n];
// 二维列表占用 O(n^2) 空间
List<List<Integer>> numList = new ArrayList<>();
for (int i = 0; i < n; i++) {
List<Integer> tmp = new ArrayList<>();
for (int j = 0; j < n; j++) {
tmp.add(0);
}
numList.add(tmp);
}
}
/* 平方阶(递归实现) */
static int quadraticRecur(int n) {
if (n <= 0) return 0;
int[] nums = new int[n];
System.out.println("递归 n = " + n + " 中的 nums 长度 = " + nums.length);
return quadraticRecur(n - 1);
}
/* 指数阶(建立满二叉树) */
static TreeNode buildTree(int n) {
if (n == 0) return null;
TreeNode root = new TreeNode(0);
root.left = buildTree(n - 1);
root.right = buildTree(n - 1);
return root;
}
/* Driver Code */
public static void main(String[] args) {
int n = 5;
// 常数阶
constant(n);
// 线性阶
linear(n);
linearRecur(n);
// 平方阶
quadratic(n);
quadraticRecur(n);
// 指数阶
TreeNode tree = buildTree(n);
PrintUtil.printTree(tree);
}
}

@ -0,0 +1,47 @@
package chapter_computational_complexity.space_time_tradeoff;
import java.util.*;
class solution_brute_force {
public int[] twoSum(int[] nums, int target) {
int size = nums.length;
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return new int[] { i, j };
}
}
return new int[0];
}
}
class solution_hash_map {
public int[] twoSum(int[] nums, int target) {
int size = nums.length;
Map<Integer, Integer> dic = new HashMap<>();
for (int i = 0; i < size; i++) {
if (dic.containsKey(target - nums[i])) {
return new int[] { dic.get(target - nums[i]), i };
}
dic.put(nums[i], i);
}
return new int[0];
}
}
public class leetcode_two_sum {
public static void main(String[] args) {
// ======= Test Case =======
int[] nums = { 2,7,11,15 };
int target = 9;
// ====== Driver Code ======
solution_brute_force slt1 = new solution_brute_force();
int[] res = slt1.twoSum(nums, target);
System.out.println(Arrays.toString(res));
solution_hash_map slt2 = new solution_hash_map();
res = slt2.twoSum(nums, target);
System.out.println(Arrays.toString(res));
}
}

@ -0,0 +1,149 @@
package chapter_computational_complexity.time_complexity;
public class time_complexity_types {
/* 常数阶 */
static int constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
/* 线性阶 */
static int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
/* 线性阶(遍历数组) */
static int arrayTraversal(int[] nums) {
int count = 0;
// 循环次数与数组长度成正比
for (int num : nums) {
// System.out.println(num);
count++;
}
return count;
}
/* 平方阶 */
static int quadratic(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* 平方阶(冒泡排序) */
static void bubbleSort(int[] nums) {
int n = nums.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - 1 - i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 和 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
/* 指数阶(循环实现) */
static int exponential(int n) {
int count = 0, base = 1;
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* 指数阶(递归实现) */
static int expRecur(int n) {
if (n == 1) return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* 对数阶(循环实现) */
static int logarithmic(float n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* 对数阶(递归实现) */
static int logRecur(float n) {
if (n <= 1) return 0;
return logRecur(n / 2) + 1;
}
/* 线性对数阶 */
static int linearLogRecur(float n) {
if (n <= 1) return 1;
int count = linearLogRecur(n / 2) +
linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* 阶乘阶(递归实现) */
static int factorialRecur(int n) {
if (n == 0) return 1;
int count = 0;
// 从 1 个分裂出 n 个
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
/* Driver Code */
public static void main(String[] args) {
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
int n = 8;
System.out.println("输入数据大小 n = " + n);
int count = constant(n);
System.out.println("常数阶的计算操作数量 = " + count);
count = linear(n);
System.out.println("线性阶的计算操作数量 = " + count);
count = arrayTraversal(new int[n]);
System.out.println("线性阶(遍历数组)的计算操作数量 = " + count);
count = quadratic(n);
System.out.println("平方阶的计算操作数量 = " + count);
count = exponential(n);
System.out.println("指数阶(循环实现)的计算操作数量 = " + count);
count = expRecur(n);
System.out.println("指数阶(递归实现)的计算操作数量 = " + count);
count = logarithmic((float) n);
System.out.println("对数阶(循环实现)的计算操作数量 = " + count);
count = logRecur((float) n);
System.out.println("对数阶(递归实现)的计算操作数量 = " + count);
count = linearLogRecur((float) n);
System.out.println("线性对数阶(递归实现)的计算操作数量 = " + count);
count = factorialRecur(n);
System.out.println("阶乘阶(递归实现)的计算操作数量 = " + count);
}
}

@ -0,0 +1,42 @@
package chapter_computational_complexity.time_complexity;
import java.util.*;
public class worst_best_time_complexity {
/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */
static int[] randomNumbers(int n) {
Integer[] nums = new Integer[n];
// 生成数组 nums = { 1, 2, 3, ..., n }
for (int i = 0; i < n; i++) {
nums[i] = i + 1;
}
// 随机打乱数组元素
Collections.shuffle(Arrays.asList(nums));
// Integer[] -> int[]
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = nums[i];
}
return res;
}
/* 查找数组 nums 中数字 1 所在索引 */
static int findOne(int[] nums) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 1)
return i;
}
return -1;
}
/* Driver Code */
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
int n = 100;
int[] nums = randomNumbers(n);
int index = findOne(nums);
System.out.println("\n数组 [ 1, 2, ..., n ] 被打乱后 = " + Arrays.toString(nums));
System.out.println("数字 1 的索引为 " + index);
}
}
}

@ -0,0 +1,41 @@
package include;
/**
* Definition for a singly-linked list node
*/
public class ListNode {
public int val;
public ListNode next;
public ListNode(int x) {
val = x;
}
/**
* Generate a linked list with an array
* @param arr
* @return
*/
public static ListNode arrToLinkedList(int[] arr) {
ListNode dum = new ListNode(0);
ListNode head = dum;
for (int val : arr) {
head.next = new ListNode(val);
head = head.next;
}
return dum.next;
}
/**
* Get a list node with specific value from a linked list
* @param head
* @param val
* @return
*/
public static ListNode getListNode(ListNode head, int val) {
while (head != null && head.val != val) {
head = head.next;
}
return head;
}
}

@ -0,0 +1,88 @@
package include;
import java.util.*;
class Trunk {
Trunk prev;
String str;
Trunk(Trunk prev, String str) {
this.prev = prev;
this.str = str;
}
};
public class PrintUtil {
/**
* Print a linked list
* @param head
*/
public static void printLinkedList(ListNode head) {
List<String> list = new ArrayList<>();
while (head != null) {
list.add(String.valueOf(head.val));
head = head.next;
}
System.out.println(String.join(" -> ", list));
}
/**
* The interface of the tree printer
* This tree printer is borrowed from TECHIE DELIGHT
* https://www.techiedelight.com/c-program-print-binary-tree/
* @param root
*/
public static void printTree(TreeNode root) {
printTree(root, null, false);
}
/**
* Print a binary tree
* @param root
* @param prev
* @param isLeft
*/
public static void printTree(TreeNode root, Trunk prev, boolean isLeft) {
if (root == null) {
return;
}
String prev_str = " ";
Trunk trunk = new Trunk(prev, prev_str);
printTree(root.right, trunk, true);
if (prev == null) {
trunk.str = "———";
} else if (isLeft) {
trunk.str = "/———";
prev_str = " |";
} else {
trunk.str = "\\———";
prev.str = prev_str;
}
showTrunks(trunk);
System.out.println(" " + root.val);
if (prev != null) {
prev.str = prev_str;
}
trunk.str = " |";
printTree(root.left, trunk, false);
}
/**
* Helper function to print branches of the binary tree
* @param p
*/
public static void showTrunks(Trunk p) {
if (p == null) {
return;
}
showTrunks(p.prev);
System.out.print(p.str);
}
}

@ -0,0 +1,80 @@
package include;
import java.util.*;
/**
* Definition for a binary tree node.
*/
public class TreeNode {
public int val;
public TreeNode left;
public TreeNode right;
public TreeNode(int x) {
val = x;
}
/**
* Generate a binary tree with an array
* @param arr
* @return
*/
public static TreeNode arrToTree(Integer[] arr) {
TreeNode root = new TreeNode(arr[0]);
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
int i = 1;
while(!queue.isEmpty()) {
TreeNode node = queue.poll();
if(arr[i] != null) {
node.left = new TreeNode(arr[i]);
queue.add(node.left);
}
i++;
if(arr[i] != null) {
node.right = new TreeNode(arr[i]);
queue.add(node.right);
}
i++;
}
return root;
}
/**
* Serialize a binary tree to a list
* @param root
* @return
*/
public static List<Integer> treeToList(TreeNode root) {
List<Integer> list = new ArrayList<>();
if(root == null) return list;
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
while(!queue.isEmpty()) {
TreeNode node = queue.poll();
if(node != null) {
list.add(node.val);
queue.add(node.left);
queue.add(node.right);
}
else {
list.add(null);
}
}
return list;
}
/**
* Get a tree node with specific value in a binary tree
* @param root
* @param val
* @return
*/
public static TreeNode getTreeNode(TreeNode root, int val) {
if (root == null)
return null;
if (root.val == val)
return root;
TreeNode left = getTreeNode(root.left, val);
TreeNode right = getTreeNode(root.right, val);
return left != null ? left : right;
}
}

@ -3,5 +3,5 @@ cd site
git init
git add -A
git commit -m 'deploy'
git push -f git@github.com:krahets/dsa-021.git master:gh-pages
git push -f git@github.com:krahets/hello-algo.git master:gh-pages
cd -

@ -1,17 +1,23 @@
---
comments: true
hide:
- footer
---
# Data Structure And Algorithm: From 0 to 1
# Hello算法
## Update Log
TODO
To be updated...
## 更新日志
| Chapter | Date |
| 更新内容 | 日期 |
| ------------ | ---------- |
| 数组与链表 | 2022-10-15 |
| 数据结构简介 | 2022-10-20 |
| 前言 | 2022-10-23 |
| 计算复杂度 | 2022-11-03 |
| 新增:算法无处不在 | 2022-10-10 |
| 新增:数组与链表 | 2022-10-15 |
| 新增:数据结构简介 | 2022-10-20 |
| 新增:前言 | 2022-10-23 |
| 新增:计算复杂度 | 2022-11-03 |
| 更新:配图 | 2022-11-04 |
| 新增:数据与内存 | 2022-11-05 |
| 更新:各章节 Java 代码 | 2022-11-06 |
| 更新:列表 Java 代码、配图 | 2022-11-07 |

@ -1,11 +1,11 @@
# Project information
site_name: 算法入门速成
site_url: https://krahets.github.io/dsa-021/
site_name: Hello 算法
site_url: https://krahets.github.io/hello-algo/
site_author: Krahets
site_description: Your first book to learn Data Structure And Algorithm.
# Repository
repo_name: krahets/dsa-021
repo_url: https://github.com/krahets/dsa-021
repo_name: krahets/hello-algo
repo_url: https://github.com/krahets/hello-algo
# Copyright
copyright: Copyright &copy; 2020 - 2022 Krahets
@ -115,17 +115,18 @@ extra_css:
nav:
- 关于本书:
- chapter_about/index.md
- 前言:
- 算法无处不在:
- chapter_introduction/index.md
- 计算复杂度:
- chapter_computational_complexity/index.md
- 算法效率评估: chapter_computational_complexity/performance_evaluation.md
- 时间复杂度: chapter_computational_complexity/time_complexity.md
- 空间复杂度: chapter_computational_complexity/space_complexity.md
- 权衡时间与空间: chapter_computational_complexity/space_time_tradeoff.md
- 小结: chapter_computational_complexity/summary.md
- 数据结构简介:
- chapter_data_structure/index.md
- 数据与内存: chapter_data_structure/computer_memory.md
- 数据与内存: chapter_data_structure/data_and_memory.md
- 数据结构分类: chapter_data_structure/classification_of_data_strcuture.md
- 小结: chapter_data_structure/summary.md
- 数组与链表:
@ -134,3 +135,5 @@ nav:
- 链表: chapter_array_and_linkedlist/linked_list.md
- 列表: chapter_array_and_linkedlist/list.md
- 小结: chapter_array_and_linkedlist/summary.md
- License:
- chapter_license/index.md
Loading…
Cancel
Save