Update stack, queue, space_time_tradeoff

pull/280/head
Yudong Jin 2 years ago
parent 4d021775c3
commit 90ee88ccf5

@ -11,23 +11,23 @@ import java.util.*;
public class stack {
public static void main(String[] args) {
/* 初始化栈 */
// 在 Java 中,推荐将 LinkedList 当作栈来使用
LinkedList<Integer> stack = new LinkedList<>();
// 在 Java 中,推荐将 ArrayList 当作栈来使用
List<Integer> stack = new ArrayList<>();
/* 元素入栈 */
stack.addLast(1);
stack.addLast(3);
stack.addLast(2);
stack.addLast(5);
stack.addLast(4);
stack.add(1);
stack.add(3);
stack.add(2);
stack.add(5);
stack.add(4);
System.out.println("栈 stack = " + stack);
/* 访问栈顶元素 */
int peek = stack.peekLast();
int peek = stack.get(stack.size() - 1);
System.out.println("栈顶元素 peek = " + peek);
/* 元素出栈 */
int pop = stack.removeLast();
int pop = stack.remove(stack.size() - 1);
System.out.println("出栈元素 pop = " + pop + ",出栈后 stack = " + stack);
/* 获取栈的长度 */

@ -16,7 +16,7 @@ comments: true
!!! question "两数之和"
给定一个整数数组 `nums` 和一个整数目标值 `target` ,请你在该数组中找出为目标值 `target` 的那两个整数,并返回它们的数组下标。
给定一个整数数组 `nums` 和一个整数目标值 `target` ,请你在该数组中找出“和”为目标值 `target` 的那两个整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

@ -234,24 +234,24 @@ comments: true
/* 初始化队列 */
// Swift 没有内置的队列类,可以把 Array 当作队列来使用
var queue: [Int] = []
/* 元素入队 */
queue.append(1)
queue.append(3)
queue.append(2)
queue.append(5)
queue.append(4)
/* 访问队首元素 */
let peek = queue.first!
/* 元素出队 */
// 使用 Array 模拟时 poll 的复杂度为 O(n)
let pool = queue.removeFirst()
/* 获取队列的长度 */
let size = queue.count
/* 判断队列是否为空 */
let isEmpty = queue.isEmpty
```
@ -264,6 +264,17 @@ comments: true
我们将链表的「头结点」和「尾结点」分别看作是队首和队尾,并规定队尾只可添加结点,队首只可删除结点。
=== "LinkedListQueue"
![linkedlist_queue](queue.assets/linkedlist_queue.png)
=== "push()"
![linkedlist_queue_push](queue.assets/linkedlist_queue_push.png)
=== "poll()"
![linkedlist_queue_poll](queue.assets/linkedlist_queue_poll.png)
以下是使用链表实现队列的示例代码。
=== "Java"
```java title="linkedlist_queue.java"
@ -434,19 +445,19 @@ comments: true
// 使用内置包 list 来实现队列
data *list.List
}
// newLinkedListQueue 初始化链表
func newLinkedListQueue() *linkedListQueue {
return &linkedListQueue{
data: list.New(),
}
}
// offer 入队
func (s *linkedListQueue) offer(value any) {
s.data.PushBack(value)
}
// poll 出队
func (s *linkedListQueue) poll() any {
if s.isEmpty() {
@ -456,7 +467,7 @@ comments: true
s.data.Remove(e)
return e.Value
}
// peek 访问队首元素
func (s *linkedListQueue) peek() any {
if s.isEmpty() {
@ -465,12 +476,12 @@ comments: true
e := s.data.Front()
return e.Value
}
// size 获取队列的长度
func (s *linkedListQueue) size() int {
return s.data.Len()
}
// isEmpty 判断队列是否为空
func (s *linkedListQueue) isEmpty() bool {
return s.data.Len() == 0
@ -658,19 +669,19 @@ comments: true
private var front: ListNode? // 头结点
private var rear: ListNode? // 尾结点
private var _size = 0
init() {}
/* 获取队列的长度 */
func size() -> Int {
_size
}
/* 判断队列是否为空 */
func isEmpty() -> Bool {
size() == 0
}
/* 入队 */
func offer(num: Int) {
// 尾结点后添加 num
@ -687,7 +698,7 @@ comments: true
}
_size += 1
}
/* 出队 */
@discardableResult
func poll() -> Int {
@ -697,7 +708,7 @@ comments: true
_size -= 1
return num
}
/* 访问队首元素 */
func peek() -> Int {
if isEmpty() {
@ -712,11 +723,18 @@ comments: true
数组的删除首元素的时间复杂度为 $O(n)$ ,因此不适合直接用来实现队列。然而,我们可以借助两个指针 `front` , `rear` 来分别记录队首和队尾的索引位置,在入队 / 出队时分别将 `front` / `rear` 向后移动一位即可,这样每次仅需操作一个元素,时间复杂度降至 $O(1)$ 。
还有一个问题,在入队与出队的过程中,两个指针都在向后移动,而到达尾部后则无法继续移动了。为了解决此问题,我们可以采取一个取巧方案,即将数组看作是“环形”的。具体做法是规定指针越过数组尾部后,再次回到头部接续遍历,这样相当于使数组“首尾相连”了。
=== "ArrayQueue"
![array_queue](queue.assets/array_queue.png)
=== "push()"
![array_queue_push](queue.assets/array_queue_push.png)
=== "poll()"
![array_queue_poll](queue.assets/array_queue_poll.png)
为了适应环形数组的设定,获取长度 `size()` 、入队 `offer()` 、出队 `poll()` 方法都需要做相应的取余操作处理,使得当尾指针绕回数组头部时,仍然可以正确处理操作。
细心的同学可能会发现一个问题,即在入队与出队的过程中,两个指针都在向后移动,**在到达尾部后则无法继续移动了**
基于数组实现的队列有一个缺点,即长度不可变。但这点我们可以通过动态数组来解决,有兴趣的同学可以自行实现。
为了解决此问题,我们可以采取一个取巧方案,**即将数组看作是“环形”的**。具体做法是规定指针越过数组尾部后,再次回到头部接续遍历,这样相当于使数组“首尾相连”了。在环形数组的设定下,获取长度 `size()` 、入队 `offer()` 、出队 `poll()` 方法都需要做相应的取余操作处理,使得当尾指针绕回数组头部时,仍然可以正确处理操作
=== "Java"
@ -898,7 +916,7 @@ comments: true
front int // 头指针,指向队首
rear int // 尾指针,指向队尾 + 1
}
// newArrayQueue 基于环形数组实现的队列
func newArrayQueue(capacity int) *arrayQueue {
return &arrayQueue{
@ -908,18 +926,18 @@ comments: true
rear: 0,
}
}
// size 获取队列的长度
func (q *arrayQueue) size() int {
size := (q.capacity + q.rear - q.front) % q.capacity
return size
}
// isEmpty 判断队列是否为空
func (q *arrayQueue) isEmpty() bool {
return q.rear-q.front == 0
}
// offer 入队
func (q *arrayQueue) offer(v int) {
// 当 rear == capacity 表示队列已满
@ -931,7 +949,7 @@ comments: true
// 尾指针向后移动一位,越过尾部后返回到数组头部
q.rear = (q.rear + 1) % q.capacity
}
// poll 出队
func (q *arrayQueue) poll() any {
if q.isEmpty() {
@ -942,7 +960,7 @@ comments: true
q.front = (q.front + 1) % q.capacity
return v
}
// peek 访问队首元素
func (q *arrayQueue) peek() any {
if q.isEmpty() {
@ -1128,29 +1146,29 @@ comments: true
private var nums: [Int] // 用于存储队列元素的数组
private var front = 0 // 头指针,指向队首
private var rear = 0 // 尾指针,指向队尾 + 1
init(capacity: Int) {
// 初始化数组
nums = Array(repeating: 0, count: capacity)
}
/* 获取队列的容量 */
func capacity() -> Int {
nums.count
}
/* 获取队列的长度 */
func size() -> Int {
let capacity = capacity()
// 由于将数组看作为环形,可能 rear < front
return (capacity + rear - front) % capacity
}
/* 判断队列是否为空 */
func isEmpty() -> Bool {
rear - front == 0
}
/* 入队 */
func offer(num: Int) {
if size() == capacity() {
@ -1162,7 +1180,7 @@ comments: true
// 尾指针向后移动一位,越过尾部后返回到数组头部
rear = (rear + 1) % capacity()
}
/* 出队 */
@discardableResult
func poll() -> Int {
@ -1171,7 +1189,7 @@ comments: true
front = (front + 1) % capacity()
return num
}
/* 访问队首元素 */
func peek() -> Int {
if isEmpty() {
@ -1182,6 +1200,12 @@ comments: true
}
```
以上代码仍存在局限性,即长度不可变。然而,我们可以通过将数组替换为列表(即动态数组)来引入扩容机制,有兴趣的同学可以尝试实现。
## 两种实现对比
与栈的结论一致,在此不再赘述。
## 队列典型应用
- **淘宝订单**。购物者下单后,订单就被加入到队列之中,随后系统再根据顺序依次处理队列中的订单。在双十一时,在短时间内会产生海量的订单,如何处理「高并发」则是工程师们需要重点思考的问题。

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

@ -32,27 +32,27 @@ comments: true
</div>
我们可以直接使用编程语言实现好的栈类。
我们可以直接使用编程语言实现好的栈类。 某些语言并未专门提供栈类,但我们可以直接把该语言的「数组」或「链表」看作栈来使用,并通过“脑补”来屏蔽无关操作。
=== "Java"
```java title="stack.java"
/* 初始化栈 */
// 在 Java 中,推荐将 LinkedList 当作栈来使用
LinkedList<Integer> stack = new LinkedList<>();
// 在 Java 中,推荐将 ArrayList 当作栈来使用
List<Integer> stack = new ArrayList<>();
/* 元素入栈 */
stack.addLast(1);
stack.addLast(3);
stack.addLast(2);
stack.addLast(5);
stack.addLast(4);
stack.add(1);
stack.add(3);
stack.add(2);
stack.add(5);
stack.add(4);
/* 访问栈顶元素 */
int peek = stack.peekLast();
int peek = stack.get(stack.size() - 1);
/* 元素出栈 */
int pop = stack.removeLast();
int pop = stack.remove(stack.size() - 1);
/* 获取栈的长度 */
int size = stack.size();
@ -234,23 +234,23 @@ comments: true
/* 初始化栈 */
// Swift 没有内置的栈类,可以把 Array 当作栈来使用
var stack: [Int] = []
/* 元素入栈 */
stack.append(1)
stack.append(3)
stack.append(2)
stack.append(5)
stack.append(4)
/* 访问栈顶元素 */
let peek = stack.last!
/* 元素出栈 */
let pop = stack.removeLast()
/* 获取栈的长度 */
let size = stack.count
/* 判断是否为空 */
let isEmpty = stack.isEmpty
```
@ -263,11 +263,20 @@ comments: true
### 基于链表的实现
使用「链表」实现栈时,将链表的头结点看作栈顶,尾结点看作栈底。
使用「链表」实现栈时,将链表的头结点看作栈顶,尾结点看作栈底。
对于入栈操作,将元素插入到链表头部即可,这种结点添加方式被称为“头插法”。而对于出栈操作,则将头结点从链表中删除即可。
受益于链表的离散存储方式,栈的扩容更加灵活,删除元素的内存也会被系统自动回收;缺点是无法像数组一样高效地随机访问,并且由于链表结点需存储指针,导致单个元素占用空间更大。
=== "LinkedListStack"
![linkedlist_stack](stack.assets/linkedlist_stack.png)
=== "push()"
![linkedlist_stack_push](stack.assets/linkedlist_stack_push.png)
=== "pop()"
![linkedlist_stack_pop](stack.assets/linkedlist_stack_pop.png)
以下是基于链表实现栈的示例代码。
=== "Java"
@ -406,19 +415,19 @@ comments: true
// 使用内置包 list 来实现栈
data *list.List
}
// newLinkedListStack 初始化链表
func newLinkedListStack() *linkedListStack {
return &linkedListStack{
data: list.New(),
}
}
// push 入栈
func (s *linkedListStack) push(value int) {
s.data.PushBack(value)
}
// pop 出栈
func (s *linkedListStack) pop() any {
if s.isEmpty() {
@ -428,7 +437,7 @@ comments: true
s.data.Remove(e)
return e.Value
}
// peek 访问栈顶元素
func (s *linkedListStack) peek() any {
if s.isEmpty() {
@ -437,12 +446,12 @@ comments: true
e := s.data.Back()
return e.Value
}
// size 获取栈的长度
func (s *linkedListStack) size() int {
return s.data.Len()
}
// isEmpty 判断栈是否为空
func (s *linkedListStack) isEmpty() bool {
return s.data.Len() == 0
@ -634,19 +643,19 @@ comments: true
class LinkedListStack {
private var _peek: ListNode? // 将头结点作为栈顶
private var _size = 0 // 栈的长度
init() {}
/* 获取栈的长度 */
func size() -> Int {
_size
}
/* 判断栈是否为空 */
func isEmpty() -> Bool {
size() == 0
}
/* 入栈 */
func push(num: Int) {
let node = ListNode(x: num)
@ -654,7 +663,7 @@ comments: true
_peek = node
_size += 1
}
/* 出栈 */
@discardableResult
func pop() -> Int {
@ -663,7 +672,7 @@ comments: true
_size -= 1
return num
}
/* 访问栈顶元素 */
func peek() -> Int {
if isEmpty() {
@ -676,9 +685,18 @@ comments: true
### 基于数组的实现
使用「数组」实现栈时,将数组的尾部当作栈顶,这样可以保证入栈与出栈操作的时间复杂度都为 $O(1)$ 。准确地说,由于入栈的元素可能是源源不断的,我们需要使用可以动态扩容的「列表」
使用「数组」实现栈时,考虑将数组的尾部当作栈顶。这样设计下,「入栈」与「出栈」操作就对应在数组尾部「添加元素」与「删除元素」,时间复杂度都为 $O(1)$
基于数组实现的栈,优点是支持随机访问,缺点是会造成一定的空间浪费,因为列表的容量始终 $\geq$ 元素数量。
=== "ArrayStack"
![array_stack](stack.assets/array_stack.png)
=== "push()"
![array_stack_push](stack.assets/array_stack_push.png)
=== "pop()"
![array_stack_pop](stack.assets/array_stack_pop.png)
由于入栈的元素可能是源源不断的,因此可以使用支持动态扩容的「列表」,这样就无需自行实现数组扩容了。以下是示例代码。
=== "Java"
@ -790,30 +808,30 @@ comments: true
type arrayStack struct {
data []int // 数据
}
func newArrayStack() *arrayStack {
return &arrayStack{
// 设置栈的长度为 0容量为 16
data: make([]int, 0, 16),
}
}
// size 栈的长度
func (s *arrayStack) size() int {
return len(s.data)
}
// isEmpty 栈是否为空
func (s *arrayStack) isEmpty() bool {
return s.size() == 0
}
// push 入栈
func (s *arrayStack) push(v int) {
// 切片会自动扩容
s.data = append(s.data, v)
}
// pop 出栈
func (s *arrayStack) pop() any {
// 弹出栈前,先判断是否为空
@ -824,7 +842,7 @@ comments: true
s.data = s.data[:len(s.data)-1]
return val
}
// peek 获取栈顶元素
func (s *arrayStack) peek() any {
if s.isEmpty() {
@ -965,27 +983,27 @@ comments: true
/* 基于数组实现的栈 */
class ArrayStack {
private var stack: [Int]
init() {
// 初始化列表(动态数组)
stack = []
}
/* 获取栈的长度 */
func size() -> Int {
stack.count
}
/* 判断栈是否为空 */
func isEmpty() -> Bool {
stack.isEmpty
}
/* 入栈 */
func push(num: Int) {
stack.append(num)
}
/* 出栈 */
@discardableResult
func pop() -> Int {
@ -994,7 +1012,7 @@ comments: true
}
return stack.removeLast()
}
/* 访问栈顶元素 */
func peek() -> Int {
if isEmpty() {
@ -1005,9 +1023,30 @@ comments: true
}
```
!!! tip
## 两种实现对比
### 支持操作
两种实现都支持栈定义中的各项操作,数组实现额外支持随机访问,但这已经超出栈的定义范畴,一般不会用到。
### 时间效率
在数组(列表)实现中,入栈与出栈操作都是在预先分配好的连续内存中操作,具有很好的缓存本地性,效率很好。然而,如果入栈时超出数组容量,则会触发扩容机制,那么该次入栈操作的时间复杂度为 $O(n)$ 。
在链表实现中,链表的扩容非常灵活,不存在上述数组扩容时变慢的问题。然而,入栈操作需要初始化结点对象并修改指针,因而效率不如数组。进一步地思考,如果入栈元素不是 `int` 而是结点对象,那么就可以省去初始化步骤,从而提升效率。
综上所述,当入栈与出栈操作的元素是基本数据类型(例如 `int` , `double` )时,则结论如下:
- 数组实现的栈在触发扩容时会变慢,但由于扩容是低频操作,因此 **总体效率更高**
- 链表实现的栈可以提供 **更加稳定的效率表现**
### 空间效率
在初始化列表时,系统会给列表分配“初始容量”,该容量可能超过我们的需求。并且扩容机制一般是按照特定倍率(比如 2 倍)进行扩容,扩容后的容量也可能超出我们的需求。因此,**数组实现栈会造成一定的空间浪费**。
当然,由于结点需要额外存储指针,因此 **链表结点比数组元素占用更大**。
某些语言并未专门提供栈类,但我们可以直接把该语言的「数组」或「链表」看作栈来使用,并通过“脑补”来屏蔽无关操作,而无需像上述代码去特意包装一层。
综上,我们不能简单地确定哪种实现更加省内存,需要 case-by-case 地分析
## 栈典型应用

@ -5,5 +5,7 @@ comments: true
# 小结
- 栈是一种遵循先入后出的数据结构,可以使用数组或链表实现。
- 队列是一种遵循先入先出的数据结构,可以使用数组或链表实现。
- 在时间效率方面,栈的数组实现具有更好的平均效率,但扩容时会导致单次入栈操作的时间复杂度劣化至 $O(n)$ 。相对地,栈的链表实现具有更加稳定的效率表现。
- 在空间效率方面,栈的数组实现会造成一定空间浪费,然而链表结点比数组元素占用内存更大。
- 队列是一种遵循先入先出的数据结构,可以使用数组或链表实现。对于两种实现的时间效率与空间效率对比,与上述栈的结论相同。
- 双向队列的两端都可以添加与删除元素。

Loading…
Cancel
Save