commit
9d6132c478
@ -0,0 +1,134 @@
|
||||
// File: time_complexity_types.go
|
||||
// Created Time: 2022-12-13
|
||||
// Author: cathay (cathaycchen@gmail.com)
|
||||
|
||||
package chapter_computational_complexity
|
||||
|
||||
// constant 常数阶
|
||||
func constant(n int) int {
|
||||
count := 0
|
||||
var size = 100000
|
||||
for i := 0; i < size; i++ {
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// linear 线性阶
|
||||
func linear(n int) int {
|
||||
count := 0
|
||||
for i := 0; i < n; i++ {
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// arrayTraversal 线性阶(遍历数组)
|
||||
func arrayTraversal(nums []int) int {
|
||||
count := 0
|
||||
// 循环次数与数组长度成正比
|
||||
for range nums {
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// quadratic 平方阶
|
||||
func quadratic(n int) int {
|
||||
count := 0
|
||||
// 循环次数与数组长度成平方关系
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < n; j++ {
|
||||
count++
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// bubbleSort 平方阶(冒泡排序)
|
||||
func bubbleSort(nums []int) int {
|
||||
count := 0 // 计数器
|
||||
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
||||
for i := len(nums) - 1; i > 0; i-- {
|
||||
// 内循环:冒泡操作
|
||||
for j := 0; j < i; j++ {
|
||||
if nums[j] > nums[j + 1] {
|
||||
// 交换 nums[j] 与 nums[j + 1]
|
||||
tmp := nums[j]
|
||||
nums[j] = nums[j + 1]
|
||||
nums[j + 1] = tmp
|
||||
count += 3 // 元素交换包含 3 个单元操作
|
||||
}
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// exponential 指数阶(循环实现)
|
||||
func exponential(n int) int {
|
||||
count := 0
|
||||
base := 1
|
||||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||||
for i := 0; i < n; i++ {
|
||||
for j := 0; j < base; j++ {
|
||||
count++
|
||||
}
|
||||
base *= 2
|
||||
}
|
||||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||||
return count
|
||||
}
|
||||
|
||||
// expRecur 指数阶(递归实现)
|
||||
func expRecur(n int) int {
|
||||
if n == 1 {
|
||||
return 1
|
||||
}
|
||||
return expRecur(n - 1) + expRecur(n - 1) + 1
|
||||
}
|
||||
|
||||
// logarithmic 对数阶(循环实现)
|
||||
func logarithmic(n float32) int {
|
||||
count := 0
|
||||
for n > 1 {
|
||||
n = n / 2
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// logRecur 对数阶(递归实现)
|
||||
func logRecur(n float32) int {
|
||||
if n <= 1 {
|
||||
return 0
|
||||
}
|
||||
return logRecur(n / 2) + 1
|
||||
}
|
||||
|
||||
// 线性对数阶
|
||||
func linearLogRecur(n float32) int {
|
||||
if n <= 1 {
|
||||
return 1
|
||||
}
|
||||
count := linearLogRecur(n / 2) + linearLogRecur(n / 2)
|
||||
for i := 0; float32(i) < n; i++ {
|
||||
count++
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// factorialRecur 阶乘阶(递归实现)
|
||||
func factorialRecur(n int) int {
|
||||
if n == 0 {
|
||||
return 1
|
||||
}
|
||||
count := 0
|
||||
// 从 1 个分裂出 n 个
|
||||
for i := 0; i < n; i++ {
|
||||
count += factorialRecur(n - 1)
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
|
||||
|
@ -0,0 +1,49 @@
|
||||
// File: time_complexity_types_test.go
|
||||
// Created Time: 2022-12-13
|
||||
// Author: cathay (cathaycchen@gmail.com)
|
||||
|
||||
package chapter_computational_complexity
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestRunCount(t *testing.T) {
|
||||
// ======= Test Case =======
|
||||
n := 8
|
||||
fmt.Println("输入数据大小 n =", n)
|
||||
|
||||
// ====== Driver Code ======
|
||||
count := constant(n)
|
||||
fmt.Println("常数阶的计算操作数量 =", count)
|
||||
|
||||
count = linear(n)
|
||||
fmt.Println("线性阶的计算操作数量 =", count)
|
||||
count = arrayTraversal(make([]int, n))
|
||||
fmt.Println("线性阶(遍历数组)的计算操作数量 =", count)
|
||||
|
||||
count = quadratic(n)
|
||||
fmt.Println("平方阶的计算操作数量 =", count)
|
||||
nums := make([]int, n)
|
||||
for i := 0; i < n; i++ {
|
||||
nums[i] = n - i // [n,n-1,...,2,1]
|
||||
}
|
||||
count = bubbleSort(nums)
|
||||
fmt.Println("平方阶(冒泡排序)的计算操作数量 =", count)
|
||||
|
||||
count = exponential(n)
|
||||
fmt.Println("指数阶(循环实现)的计算操作数量 =", count)
|
||||
count = expRecur(n)
|
||||
fmt.Println("指数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = logarithmic(float32(n))
|
||||
fmt.Println("对数阶(循环实现)的计算操作数量 =", count)
|
||||
count = logRecur(float32(n))
|
||||
fmt.Println("对数阶(递归实现)的计算操作数量 =", count)
|
||||
count = linearLogRecur(float32(n))
|
||||
fmt.Println("线性对数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = factorialRecur(n)
|
||||
fmt.Println("阶乘阶(递归实现)的计算操作数量 =", count)
|
||||
}
|
@ -0,0 +1,31 @@
|
||||
// File: worst_best_time_complexity.go
|
||||
// Created Time: 2022-12-13
|
||||
// Author: cathay (cathaycchen@gmail.com)
|
||||
|
||||
package chapter_computational_complexity
|
||||
|
||||
import "math/rand"
|
||||
|
||||
// randomNumbers 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
|
||||
func randomNumbers(n int) []int {
|
||||
nums := make([]int, n)
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
for i := 0; i < n; i++ {
|
||||
nums[i] = i + 1
|
||||
}
|
||||
// 随机打乱数组元素
|
||||
rand.Shuffle(len(nums), func(i, j int) {
|
||||
nums[i], nums[j] = nums[j], nums[i]
|
||||
})
|
||||
return nums
|
||||
}
|
||||
|
||||
// findOne 查找数组 nums 中数字 1 所在索引
|
||||
func findOne(nums []int) int {
|
||||
for i := 0; i < len(nums); i++ {
|
||||
if nums[i] == 1 {
|
||||
return i
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
@ -0,0 +1,20 @@
|
||||
// Copyright 2022 Cathay. All rights reserved.
|
||||
// Use of this source code is governed by a MIT style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package chapter_computational_complexity
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestWorstBestTimeComplexity(t *testing.T) {
|
||||
for i := 0; i < 10; i++ {
|
||||
n := 100
|
||||
nums := randomNumbers(n)
|
||||
index := findOne(nums)
|
||||
fmt.Println("打乱后的数组为", nums)
|
||||
fmt.Println("数字 1 的索引为", index)
|
||||
}
|
||||
}
|
Loading…
Reference in new issue