Merge branch 'master' of github.com:Cathay-Chen/hello-algo into Cathay-Chen-master

pull/105/head
Yudong Jin 2 years ago
commit 9d6132c478

@ -0,0 +1,134 @@
// File: time_complexity_types.go
// Created Time: 2022-12-13
// Author: cathay (cathaycchen@gmail.com)
package chapter_computational_complexity
// constant 常数阶
func constant(n int) int {
count := 0
var size = 100000
for i := 0; i < size; i++ {
count++
}
return count
}
// linear 线性阶
func linear(n int) int {
count := 0
for i := 0; i < n; i++ {
count++
}
return count
}
// arrayTraversal 线性阶(遍历数组)
func arrayTraversal(nums []int) int {
count := 0
// 循环次数与数组长度成正比
for range nums {
count++
}
return count
}
// quadratic 平方阶
func quadratic(n int) int {
count := 0
// 循环次数与数组长度成平方关系
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
count++
}
}
return count
}
// bubbleSort 平方阶(冒泡排序)
func bubbleSort(nums []int) int {
count := 0 // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i := len(nums) - 1; i > 0; i-- {
// 内循环:冒泡操作
for j := 0; j < i; j++ {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
tmp := nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 元素交换包含 3 个单元操作
}
}
}
return count
}
// exponential 指数阶(循环实现)
func exponential(n int) int {
count := 0
base := 1
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for i := 0; i < n; i++ {
for j := 0; j < base; j++ {
count++
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
// expRecur 指数阶(递归实现)
func expRecur(n int) int {
if n == 1 {
return 1
}
return expRecur(n - 1) + expRecur(n - 1) + 1
}
// logarithmic 对数阶(循环实现)
func logarithmic(n float32) int {
count := 0
for n > 1 {
n = n / 2
count++
}
return count
}
// logRecur 对数阶(递归实现)
func logRecur(n float32) int {
if n <= 1 {
return 0
}
return logRecur(n / 2) + 1
}
// 线性对数阶
func linearLogRecur(n float32) int {
if n <= 1 {
return 1
}
count := linearLogRecur(n / 2) + linearLogRecur(n / 2)
for i := 0; float32(i) < n; i++ {
count++
}
return count
}
// factorialRecur 阶乘阶(递归实现)
func factorialRecur(n int) int {
if n == 0 {
return 1
}
count := 0
// 从 1 个分裂出 n 个
for i := 0; i < n; i++ {
count += factorialRecur(n - 1)
}
return count
}

@ -0,0 +1,49 @@
// File: time_complexity_types_test.go
// Created Time: 2022-12-13
// Author: cathay (cathaycchen@gmail.com)
package chapter_computational_complexity
import (
"fmt"
"testing"
)
func TestRunCount(t *testing.T) {
// ======= Test Case =======
n := 8
fmt.Println("输入数据大小 n =", n)
// ====== Driver Code ======
count := constant(n)
fmt.Println("常数阶的计算操作数量 =", count)
count = linear(n)
fmt.Println("线性阶的计算操作数量 =", count)
count = arrayTraversal(make([]int, n))
fmt.Println("线性阶(遍历数组)的计算操作数量 =", count)
count = quadratic(n)
fmt.Println("平方阶的计算操作数量 =", count)
nums := make([]int, n)
for i := 0; i < n; i++ {
nums[i] = n - i // [n,n-1,...,2,1]
}
count = bubbleSort(nums)
fmt.Println("平方阶(冒泡排序)的计算操作数量 =", count)
count = exponential(n)
fmt.Println("指数阶(循环实现)的计算操作数量 =", count)
count = expRecur(n)
fmt.Println("指数阶(递归实现)的计算操作数量 =", count)
count = logarithmic(float32(n))
fmt.Println("对数阶(循环实现)的计算操作数量 =", count)
count = logRecur(float32(n))
fmt.Println("对数阶(递归实现)的计算操作数量 =", count)
count = linearLogRecur(float32(n))
fmt.Println("线性对数阶(递归实现)的计算操作数量 =", count)
count = factorialRecur(n)
fmt.Println("阶乘阶(递归实现)的计算操作数量 =", count)
}

@ -0,0 +1,31 @@
// File: worst_best_time_complexity.go
// Created Time: 2022-12-13
// Author: cathay (cathaycchen@gmail.com)
package chapter_computational_complexity
import "math/rand"
// randomNumbers 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
func randomNumbers(n int) []int {
nums := make([]int, n)
// 生成数组 nums = { 1, 2, 3, ..., n }
for i := 0; i < n; i++ {
nums[i] = i + 1
}
// 随机打乱数组元素
rand.Shuffle(len(nums), func(i, j int) {
nums[i], nums[j] = nums[j], nums[i]
})
return nums
}
// findOne 查找数组 nums 中数字 1 所在索引
func findOne(nums []int) int {
for i := 0; i < len(nums); i++ {
if nums[i] == 1 {
return i
}
}
return -1
}

@ -0,0 +1,20 @@
// Copyright 2022 Cathay. All rights reserved.
// Use of this source code is governed by a MIT style
// license that can be found in the LICENSE file.
package chapter_computational_complexity
import (
"fmt"
"testing"
)
func TestWorstBestTimeComplexity(t *testing.T) {
for i := 0; i < 10; i++ {
n := 100
nums := randomNumbers(n)
index := findOne(nums)
fmt.Println("打乱后的数组为", nums)
fmt.Println("数字 1 的索引为", index)
}
}

@ -908,7 +908,7 @@ $$
```go title="time_complexity_types.go"
/* 平方阶(冒泡排序) */
func bubbleSort(nums []int) int {
count := 0 // 计数器
count := 0 // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i := len(nums) - 1; i > 0; i-- {
// 内循环:冒泡操作

Loading…
Cancel
Save