feat: Add ruby codes - chapter "Heap" (#1300)

* init heap Ruby

* feature: finish chapter heap for ruby

* fix delete heap.rb

* fix: Fix code style

* Update codes/ruby/chapter_heap/my_heap.rb

Co-authored-by: khoaxuantu <68913255+khoaxuantu@users.noreply.github.com>

* Update codes/ruby/chapter_heap/top_k.rb

Co-authored-by: khoaxuantu <68913255+khoaxuantu@users.noreply.github.com>

* fix: apply the suggested changes

* fix to_a

* Update my_heap.rb

---------

Co-authored-by: khoaxuantu <68913255+khoaxuantu@users.noreply.github.com>
Co-authored-by: Yudong Jin <krahets@163.com>
pull/1313/head
bluebean-cloud 7 months ago committed by GitHub
parent ca55e818a5
commit a3950e1def
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,147 @@
=begin
File: my_heap.rb
Created Time: 2024-04-19
Author: Blue Bean (lonnnnnnner@gmail.com)
=end
require_relative '../utils/print_util'
### 大顶堆 ###
class MaxHeap
attr_reader :max_heap
### 构造方法,根据输入列表建堆 ###
def initialize(nums)
# 将列表元素原封不动添加进堆
@max_heap = nums
# 堆化除叶节点以外的其他所有节点
parent(size - 1).downto(0) do |i|
sift_down(i)
end
end
### 获取左子节点的索引 ###
def left(i)
2 * i + 1
end
### 获取右子节点的索引 ###
def right(i)
2 * i + 2
end
### 获取父节点的索引 ###
def parent(i)
(i - 1) / 2 # 向下整除
end
### 交换元素 ###
def swap(i, j)
@max_heap[i], @max_heap[j] = @max_heap[j], @max_heap[i]
end
### 获取堆大小 ###
def size
@max_heap.length
end
### 判断堆是否为空 ###
def is_empty?
size == 0
end
### 访问堆顶元素 ###
def peek
@max_heap[0]
end
### 元素入堆 ###
def push(val)
# 添加节点
@max_heap << val
# 从底至顶堆化
sift_up(size - 1)
end
### 从节点 i 开始,从底至顶堆化 ###
def sift_up(i)
loop do
# 获取节点 i 的父节点
p = parent(i)
# 当“越过根节点”或“节点无须修复”时,结束堆化
break if p < 0 || @max_heap[i] <= @max_heap[p]
# 交换两节点
swap(i, p)
# 循环向上堆化
i = p
end
end
### 元素出堆 ###
def pop
# 判空处理
raise IndexError, "堆为空" if is_empty?
# 交换根节点与最右叶节点(交换首元素与尾元素)
swap(0, size - 1)
# 删除节点
val = @max_heap.pop
# 从顶至底堆化
sift_down(0)
# 返回堆顶元素
val
end
### 从节点 i 开始,从顶至底堆化 ###
def sift_down(i)
loop do
# 判断节点 i, l, r 中值最大的节点,记为 ma
l, r, ma = left(i), right(i), i
ma = l if l < size && @max_heap[l] > @max_heap[ma]
ma = r if r < size && @max_heap[r] > @max_heap[ma]
# 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
break if ma == i
# 交换两节点
swap(i, ma)
# 循环向下堆化
i = ma
end
end
### 打印堆(二叉树)###
def __print__
print_heap(@max_heap)
end
end
### Driver Code ###
if __FILE__ == $0
# 初始化大顶堆
max_heap = MaxHeap.new([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
puts "\n输入列表并建堆后"
max_heap.__print__
# 获取堆顶元素
peek = max_heap.peek
puts "\n堆顶元素为 #{peek}"
# 元素入堆
val = 7
max_heap.push(val)
puts "\n元素 #{val} 入堆后"
max_heap.__print__
# 堆顶元素出堆
peek = max_heap.pop
puts "\n堆顶元素 #{peek} 出堆后"
max_heap.__print__
# 获取堆大小
size = max_heap.size
puts "\n堆元素数量为 #{size}"
# 判断堆是否为空
is_empty = max_heap.is_empty?
puts "\n堆是否为空 #{is_empty}"
end

@ -0,0 +1,64 @@
=begin
File: top_k.rb
Created Time: 2024-04-19
Author: Blue Bean (lonnnnnnner@gmail.com)
=end
require_relative "./my_heap"
### 元素入堆 ###
def push_min_heap(heap, val)
# 元素取反
heap.push(-val)
end
### 元素出堆 ###
def pop_min_heap(heap)
# 元素取反
-heap.pop
end
### 访问堆顶元素 ###
def peek_min_heap(heap)
# 元素取反
-heap.peek
end
### 取出堆中元素 ###
def get_min_heap(heap)
# 将堆中所有元素取反
heap.max_heap.map { |x| -x }
end
### 基于堆查找数组中最大的 k 个元素 ###
def top_k_heap(nums, k)
# 初始化小顶堆
# 请注意:我们将堆中所有元素取反,从而用大顶堆来模拟小顶堆
max_heap = MaxHeap.new([])
# 将数组的前 k 个元素入堆
for i in 0...k
push_min_heap(max_heap, nums[i])
end
# 从第 k+1 个元素开始,保持堆的长度为 k
for i in k...nums.length
# 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
if nums[i] > peek_min_heap(max_heap)
pop_min_heap(max_heap)
push_min_heap(max_heap, nums[i])
end
end
get_min_heap(max_heap)
end
### Driver Code ###
if __FILE__ == $0
nums = [1, 7, 6, 3, 2]
k = 3
res = top_k_heap(nums, k)
puts "最大的 #{k} 个元素为"
print_heap(res)
end

@ -4,6 +4,8 @@ Created Time: 2024-03-18
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
require_relative "./tree_node"
### 打印矩阵 ###
def print_matrix(mat)
s = []
@ -68,3 +70,11 @@ end
def print_hash_map(hmap)
hmap.entries.each { |key, value| puts "#{key} -> #{value}" }
end
### 打印堆 ###
def print_heap(heap)
puts "堆的数组表示:#{heap}"
puts "堆的树状表示:"
root = arr_to_tree(heap)
print_tree(root)
end

Loading…
Cancel
Save