parent
465dafe9ec
commit
ad0fd45cfb
@ -0,0 +1,109 @@
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
int knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFS(wgt, val, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFS(wgt, val, i - 1, c);
|
||||
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return max(no, yes);
|
||||
}
|
||||
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
int knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][c] != -1) {
|
||||
return mem[i][c];
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFSMem(wgt, val, mem, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
|
||||
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = max(no, yes);
|
||||
return mem[i][c];
|
||||
}
|
||||
|
||||
/* 0-1 背包:动态规划 */
|
||||
int knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {
|
||||
int n = wgt.size();
|
||||
// 初始化 dp 表
|
||||
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
}
|
||||
|
||||
/* 0-1 背包:状态压缩后的动态规划 */
|
||||
int knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {
|
||||
int n = wgt.size();
|
||||
// 初始化 dp 表
|
||||
vector<int> dp(cap + 1, 0);
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 倒序遍历
|
||||
for (int c = cap; c >= 1; c--) {
|
||||
if (wgt[i - 1] <= c) {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
vector<int> wgt = {10, 20, 30, 40, 50};
|
||||
vector<int> val = {50, 120, 150, 210, 240};
|
||||
int cap = 50;
|
||||
int n = wgt.size();
|
||||
|
||||
// 暴力搜索
|
||||
int res = knapsackDFS(wgt, val, n, cap);
|
||||
cout << "不超过背包容量的最大物品价值为 " << res << endl;
|
||||
|
||||
// 记忆化搜索
|
||||
vector<vector<int>> mem(n + 1, vector<int>(cap + 1, -1));
|
||||
res = knapsackDFSMem(wgt, val, mem, n, cap);
|
||||
cout << "不超过背包容量的最大物品价值为 " << res << endl;
|
||||
|
||||
// 动态规划
|
||||
res = knapsackDP(wgt, val, cap);
|
||||
cout << "不超过背包容量的最大物品价值为 " << res << endl;
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = knapsackDPComp(wgt, val, cap);
|
||||
cout << "不超过背包容量的最大物品价值为 " << res << endl;
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,116 @@
|
||||
/**
|
||||
* File: min_path_sum.cpp
|
||||
* Created Time: 2023-07-10
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
#include "../utils/common.hpp"
|
||||
|
||||
/* 最小路径和:暴力搜索 */
|
||||
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if (i < 0 || j < 0) {
|
||||
return INT_MAX;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(grid, i - 1, j);
|
||||
int up = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
}
|
||||
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if (i < 0 || j < 0) {
|
||||
return INT_MAX;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][j] != -1) {
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
return mem[i][j];
|
||||
}
|
||||
|
||||
/* 最小路径和:动态规划 */
|
||||
int minPathSumDP(vector<vector<int>> &grid) {
|
||||
int n = grid.size(), m = grid[0].size();
|
||||
// 初始化 dp 表
|
||||
vector<vector<int>> dp(n, vector<int>(m));
|
||||
dp[0][0] = grid[0][0];
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
||||
}
|
||||
// 状态转移:首列
|
||||
for (int i = 1; i < n; i++) {
|
||||
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i < n; i++) {
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[n - 1][m - 1];
|
||||
}
|
||||
|
||||
/* 最小路径和:状态压缩后的动态规划 */
|
||||
int minPathSumDPComp(vector<vector<int>> &grid) {
|
||||
int n = grid.size(), m = grid[0].size();
|
||||
// 初始化 dp 表
|
||||
vector<int> dp(m);
|
||||
// 状态转移:首行
|
||||
dp[0] = grid[0][0];
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = dp[j - 1] + grid[0][j];
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for (int i = 1; i < n; i++) {
|
||||
// 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0];
|
||||
// 状态转移:其余列
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[m - 1];
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
int main() {
|
||||
vector<vector<int>> grid = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
|
||||
int n = grid.size(), m = grid[0].size();
|
||||
|
||||
// 暴力搜索
|
||||
int res = minPathSumDFS(grid, n - 1, m - 1);
|
||||
cout << "从左上角到右下角的最小路径和为 " << res << endl;
|
||||
|
||||
// 记忆化搜索
|
||||
vector<vector<int>> mem(n, vector<int>(m, -1));
|
||||
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
||||
cout << "从左上角到右下角的最小路径和为 " << res << endl;
|
||||
|
||||
// 动态规划
|
||||
res = minPathSumDP(grid);
|
||||
cout << "从左上角到右下角的最小路径和为 " << res << endl;
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = minPathSumDPComp(grid);
|
||||
cout << "从左上角到右下角的最小路径和为 " << res << endl;
|
||||
|
||||
return 0;
|
||||
}
|
@ -0,0 +1,116 @@
|
||||
/**
|
||||
* File: knapsack.java
|
||||
* Created Time: 2023-07-10
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_dynamic_programming;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
public class knapsack {
|
||||
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
static int knapsackDFS(int[] wgt, int[] val, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFS(wgt, val, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFS(wgt, val, i - 1, c);
|
||||
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return Math.max(no, yes);
|
||||
}
|
||||
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
static int knapsackDFSMem(int[] wgt, int[] val, int[][] mem, int i, int c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i == 0 || c == 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][c] != -1) {
|
||||
return mem[i][c];
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFSMem(wgt, val, mem, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
|
||||
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = Math.max(no, yes);
|
||||
return mem[i][c];
|
||||
}
|
||||
|
||||
/* 0-1 背包:动态规划 */
|
||||
static int knapsackDP(int[] wgt, int[] val, int cap) {
|
||||
int n = wgt.length;
|
||||
// 初始化 dp 表
|
||||
int[][] dp = new int[n + 1][cap + 1];
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = Math.max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
}
|
||||
|
||||
/* 0-1 背包:状态压缩后的动态规划 */
|
||||
static int knapsackDPComp(int[] wgt, int[] val, int cap) {
|
||||
int n = wgt.length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[cap + 1];
|
||||
// 状态转移
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 倒序遍历
|
||||
for (int c = cap; c >= 1; c--) {
|
||||
if (wgt[i - 1] <= c) {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[] wgt = { 10, 20, 30, 40, 50 };
|
||||
int[] val = { 50, 120, 150, 210, 240 };
|
||||
int cap = 50;
|
||||
int n = wgt.length;
|
||||
|
||||
// 暴力搜索
|
||||
int res = knapsackDFS(wgt, val, n, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
|
||||
// 记忆化搜索
|
||||
int[][] mem = new int[n + 1][cap + 1];
|
||||
for (int[] row : mem) {
|
||||
Arrays.fill(row, -1);
|
||||
}
|
||||
res = knapsackDFSMem(wgt, val, mem, n, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
|
||||
// 动态规划
|
||||
res = knapsackDP(wgt, val, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = knapsackDPComp(wgt, val, cap);
|
||||
System.out.println("不超过背包容量的最大物品价值为 " + res);
|
||||
}
|
||||
}
|
@ -0,0 +1,125 @@
|
||||
/**
|
||||
* File: min_path_sum.java
|
||||
* Created Time: 2023-07-10
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_dynamic_programming;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
public class min_path_sum {
|
||||
/* 最小路径和:暴力搜索 */
|
||||
static int minPathSumDFS(int[][] grid, int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if (i < 0 || j < 0) {
|
||||
return Integer.MAX_VALUE;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(grid, i - 1, j);
|
||||
int up = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return Math.min(left, up) + grid[i][j];
|
||||
}
|
||||
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if (i == 0 && j == 0) {
|
||||
return grid[0][0];
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if (i < 0 || j < 0) {
|
||||
return Integer.MAX_VALUE;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][j] != -1) {
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = Math.min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
}
|
||||
|
||||
/* 最小路径和:动态规划 */
|
||||
static int minPathSumDP(int[][] grid) {
|
||||
int n = grid.length, m = grid[0].length;
|
||||
// 初始化 dp 表
|
||||
int[][] dp = new int[n][m];
|
||||
dp[0][0] = grid[0][0];
|
||||
// 状态转移:首行
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[0][j] = dp[0][j - 1] + grid[0][j];
|
||||
}
|
||||
// 状态转移:首列
|
||||
for (int i = 1; i < n; i++) {
|
||||
dp[i][0] = dp[i - 1][0] + grid[i][0];
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for (int i = 1; i < n; i++) {
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[n - 1][m - 1];
|
||||
}
|
||||
|
||||
/* 最小路径和:状态压缩后的动态规划 */
|
||||
static int minPathSumDPComp(int[][] grid) {
|
||||
int n = grid.length, m = grid[0].length;
|
||||
// 初始化 dp 表
|
||||
int[] dp = new int[m];
|
||||
// 状态转移:首行
|
||||
dp[0] = grid[0][0];
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = dp[j - 1] + grid[0][j];
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for (int i = 1; i < n; i++) {
|
||||
// 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0];
|
||||
// 状态转移:其余列
|
||||
for (int j = 1; j < m; j++) {
|
||||
dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
|
||||
}
|
||||
}
|
||||
return dp[m - 1];
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[][] grid = {
|
||||
{ 1, 3, 1, 5 },
|
||||
{ 2, 2, 4, 2 },
|
||||
{ 5, 3, 2, 1 },
|
||||
{ 4, 3, 5, 2 }
|
||||
};
|
||||
int n = grid.length, m = grid[0].length;
|
||||
|
||||
// 暴力搜索
|
||||
int res = minPathSumDFS(grid, n - 1, m - 1);
|
||||
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
||||
|
||||
// 记忆化搜索
|
||||
int[][] mem = new int[n][m];
|
||||
for (int[] row : mem) {
|
||||
Arrays.fill(row, -1);
|
||||
}
|
||||
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
|
||||
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
||||
|
||||
// 动态规划
|
||||
res = minPathSumDP(grid);
|
||||
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = minPathSumDPComp(grid);
|
||||
System.out.println("从左上角到右下角的做小路径和为 " + res);
|
||||
}
|
||||
}
|
Loading…
Reference in new issue