krahets 7 months ago
parent 8b8168bb31
commit b5f94abec9

@ -1458,18 +1458,21 @@ index = hash(key) % capacity
/* 基于数组实现的哈希表 */
typedef struct {
Pair *buckets[HASHTABLE_CAPACITY];
Pair *buckets[MAX_SIZE];
} ArrayHashMap;
/* 构造函数 */
ArrayHashMap *newArrayHashMap() {
ArrayHashMap *hmap = malloc(sizeof(ArrayHashMap));
for (int i=0; i < MAX_SIZE; i++) {
hmap->buckets[i] = NULL;
}
return hmap;
}
/* 析构函数 */
void delArrayHashMap(ArrayHashMap *hmap) {
for (int i = 0; i < HASHTABLE_CAPACITY; i++) {
for (int i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
free(hmap->buckets[i]->val);
free(hmap->buckets[i]);
@ -1503,13 +1506,13 @@ index = hash(key) % capacity
int i = 0, index = 0;
int total = 0;
/* 统计有效键值对数量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
entries = malloc(sizeof(Pair) * total);
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
entries[index].key = hmap->buckets[i]->key;
entries[index].val = malloc(strlen(hmap->buckets[i]->val) + 1);
@ -1527,13 +1530,13 @@ index = hash(key) % capacity
int i = 0, index = 0;
int total = 0;
/* 统计有效键值对数量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
keys = malloc(total * sizeof(int));
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
keys[index] = hmap->buckets[i]->key;
index++;
@ -1549,13 +1552,13 @@ index = hash(key) % capacity
int i = 0, index = 0;
int total = 0;
/* 统计有效键值对数量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
vals = malloc(total * sizeof(char *));
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
vals[index] = hmap->buckets[i]->val;
index++;

@ -339,7 +339,27 @@ comments: true
=== "Ruby"
```ruby title="binary_search.rb"
[class]{}-[func]{binary_search}
### 二分查找(双闭区间) ###
def binary_search(nums, target)
# 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
i, j = 0, nums.length - 1
# 循环,当搜索区间为空时跳出(当 i > j 时为空)
while i <= j
# 理论上 Ruby 的数字可以无限大(取决于内存大小),无须考虑大数越界问题
m = (i + j) / 2 # 计算中点索引 m
if nums[m] < target
i = m + 1 # 此情况说明 target 在区间 [m+1, j] 中
elsif nums[m] > target
j = m - 1 # 此情况说明 target 在区间 [i, m-1] 中
else
return m # 找到目标元素,返回其索引
end
end
-1 # 未找到目标元素,返回 -1
end
```
=== "Zig"
@ -667,7 +687,27 @@ comments: true
=== "Ruby"
```ruby title="binary_search.rb"
[class]{}-[func]{binary_search_lcro}
### 二分查找(左闭右开区间) ###
def binary_search_lcro(nums, target)
# 初始化左闭右开区间 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
i, j = 0, nums.length
# 循环,当搜索区间为空时跳出(当 i = j 时为空)
while i < j
# 计算中点索引 m
m = (i + j) / 2
if nums[m] < target
i = m + 1 # 此情况说明 target 在区间 [m+1, j) 中
elsif nums[m] > target
j = m - 1 # 此情况说明 target 在区间 [i, m) 中
else
return m # 找到目标元素,返回其索引
end
end
-1 # 未找到目标元素,返回 -1
end
```
=== "Zig"

@ -212,7 +212,16 @@ comments: true
=== "Ruby"
```ruby title="binary_search_edge.rb"
[class]{}-[func]{binary_search_left_edge}
### 二分查找最左一个 target ###
def binary_search_left_edge(nums, target)
# 等价于查找 target 的插入点
i = binary_search_insertion(nums, target)
# 未找到 target ,返回 -1
return -1 if i == nums.length || nums[i] != target
i # 找到 target ,返回索引 i
end
```
=== "Zig"
@ -461,7 +470,19 @@ comments: true
=== "Ruby"
```ruby title="binary_search_edge.rb"
[class]{}-[func]{binary_search_right_edge}
### 二分查找最右一个 target ###
def binary_search_right_edge(nums, target)
# 转化为查找最左一个 target + 1
i = binary_search_insertion(nums, target + 1)
# j 指向最右一个 target i 指向首个大于 target 的元素
j = i - 1
# 未找到 target ,返回 -1
return -1 if j == -1 || nums[j] != target
j # 找到 target ,返回索引 j
end
```
=== "Zig"

@ -293,7 +293,26 @@ comments: true
=== "Ruby"
```ruby title="binary_search_insertion.rb"
[class]{}-[func]{binary_search_insertion_simple}
### 二分查找插入点(无重复元素) ###
def binary_search_insertion_simple(nums, target)
# 初始化双闭区间 [0, n-1]
i, j = 0, nums.length - 1
while i <= j
# 计算中点索引 m
m = (i + j) / 2
if nums[m] < target
i = m + 1 # target 在区间 [m+1, j] 中
elsif nums[m] > target
j = m - 1 # target 在区间 [i, m-1] 中
else
return m # 找到 target ,返回插入点 m
end
end
i # 未找到 target ,返回插入点 i
end
```
=== "Zig"
@ -625,7 +644,26 @@ comments: true
=== "Ruby"
```ruby title="binary_search_insertion.rb"
[class]{}-[func]{binary_search_insertion}
### 二分查找插入点(存在重复元素) ###
def binary_search_insertion(nums, target)
# 初始化双闭区间 [0, n-1]
i, j = 0, nums.length - 1
while i <= j
# 计算中点索引 m
m = (i + j) / 2
if nums[m] < target
i = m + 1 # target 在区间 [m+1, j] 中
elsif nums[m] > target
j = m - 1 # target 在区间 [i, m-1] 中
else
j = m - 1 # 首个小于 target 的元素在区间 [i, m-1] 中
end
end
i # 返回插入点 i
end
```
=== "Zig"

@ -228,7 +228,17 @@ comments: true
=== "Ruby"
```ruby title="two_sum.rb"
[class]{}-[func]{two_sum_brute_force}
### 方法一:暴力枚举 ###
def two_sum_brute_force(nums, target)
# 两层循环,时间复杂度为 O(n^2)
for i in 0...(nums.length - 1)
for j in (i + 1)...nums.length
return [i, j] if nums[i] + nums[j] == target
end
end
[]
end
```
=== "Zig"
@ -531,7 +541,19 @@ comments: true
=== "Ruby"
```ruby title="two_sum.rb"
[class]{}-[func]{two_sum_hash_table}
### 方法二:辅助哈希表 ###
def two_sum_hash_table(nums, target)
# 辅助哈希表,空间复杂度为 O(n)
dic = {}
# 单层循环,时间复杂度为 O(n)
for i in 0...nums.length
return [dic[target - nums[i]], i] if dic.has_key?(target - nums[i])
dic[nums[i]] = i
end
[]
end
```
=== "Zig"

@ -340,51 +340,37 @@ comments: true
```c title="bucket_sort.c"
/* 桶排序 */
void bucketSort(float nums[], int size) {
// 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
int k = size / 2;
float **buckets = calloc(k, sizeof(float *));
for (int i = 0; i < k; i++) {
// 每个桶最多可以分配 size 个元素
buckets[i] = calloc(size, sizeof(float));
void bucketSort(float nums[], int n) {
int k = n / 2; // 初始化 k = n/2 个桶
int *sizes = malloc(k * sizeof(int)); // 记录每个桶的大小
float **buckets = malloc(k * sizeof(float *)); // 动态数组的数组(桶)
for (int i = 0; i < k; ++i) {
// 为每个桶预分配足够的空间
buckets[i] = (float *)malloc(n * sizeof(float));
sizes[i] = 0;
}
// 1. 将数组元素分配到各个桶中
for (int i = 0; i < size; i++) {
// 输入数据范围为 [0, 1),使用 num * k 映射到索引范围 [0, k-1]
int bucket_idx = nums[i] * k;
int j = 0;
// 如果桶中有数据且数据小于当前值 nums[i], 要将其放到当前桶的后面,相当于 cpp 中的 push_back
while (buckets[bucket_idx][j] > 0 && buckets[bucket_idx][j] < nums[i]) {
j++;
}
float temp = nums[i];
while (j < size && buckets[bucket_idx][j] > 0) {
swap(&temp, &buckets[bucket_idx][j]);
j++;
}
buckets[bucket_idx][j] = temp;
for (int i = 0; i < n; ++i) {
int idx = (int)(nums[i] * k);
buckets[idx][sizes[idx]++] = nums[i];
}
// 2. 对各个桶执行排序
for (int i = 0; i < k; i++) {
qsort(buckets[i], size, sizeof(float), compare_float);
for (int i = 0; i < k; ++i) {
qsort(buckets[i], sizes[i], sizeof(float), compare);
}
// 3. 遍历桶合并结果
for (int i = 0, j = 0; j < k; j++) {
for (int l = 0; l < size; l++) {
if (buckets[j][l] > 0) {
nums[i++] = buckets[j][l];
}
// 3. 合并排序后的桶
int idx = 0;
for (int i = 0; i < k; ++i) {
for (int j = 0; j < sizes[i]; ++j) {
nums[idx++] = buckets[i][j];
}
}
// 释放上述分配的内存
for (int i = 0; i < k; i++) {
// 释放内存
free(buckets[i]);
}
free(buckets);
}
```

@ -253,7 +253,21 @@ comments: true
=== "Ruby"
```ruby title="insertion_sort.rb"
[class]{}-[func]{insertion_sort}
### 插入排序 ###
def insertion_sort(nums)
n = nums.length
# 外循环:已排序区间为 [0, i-1]
for i in 1...n
base = nums[i]
j = i - 1
# 内循环:将 base 插入到已排序区间 [0, i-1] 中的正确位置
while j >= 0 && nums[j] > base
nums[j + 1] = nums[j] # 将 nums[j] 向右移动一位
j -= 1
end
nums[j + 1] = base # 将 base 赋值到正确位置
end
end
```
=== "Zig"

@ -1417,18 +1417,21 @@ The following code implements a simple hash table. Here, we encapsulate `key` an
/* 基于数组实现的哈希表 */
typedef struct {
Pair *buckets[HASHTABLE_CAPACITY];
Pair *buckets[MAX_SIZE];
} ArrayHashMap;
/* 构造函数 */
ArrayHashMap *newArrayHashMap() {
ArrayHashMap *hmap = malloc(sizeof(ArrayHashMap));
for (int i=0; i < MAX_SIZE; i++) {
hmap->buckets[i] = NULL;
}
return hmap;
}
/* 析构函数 */
void delArrayHashMap(ArrayHashMap *hmap) {
for (int i = 0; i < HASHTABLE_CAPACITY; i++) {
for (int i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
free(hmap->buckets[i]->val);
free(hmap->buckets[i]);
@ -1462,13 +1465,13 @@ The following code implements a simple hash table. Here, we encapsulate `key` an
int i = 0, index = 0;
int total = 0;
/* 统计有效键值对数量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
entries = malloc(sizeof(Pair) * total);
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
entries[index].key = hmap->buckets[i]->key;
entries[index].val = malloc(strlen(hmap->buckets[i]->val) + 1);
@ -1486,13 +1489,13 @@ The following code implements a simple hash table. Here, we encapsulate `key` an
int i = 0, index = 0;
int total = 0;
/* 统计有效键值对数量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
keys = malloc(total * sizeof(int));
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
keys[index] = hmap->buckets[i]->key;
index++;
@ -1508,13 +1511,13 @@ The following code implements a simple hash table. Here, we encapsulate `key` an
int i = 0, index = 0;
int total = 0;
/* 统计有效键值对数量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
vals = malloc(total * sizeof(char *));
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
vals[index] = hmap->buckets[i]->val;
index++;

@ -1458,18 +1458,21 @@ index = hash(key) % capacity
/* 基於陣列實現的雜湊表 */
typedef struct {
Pair *buckets[HASHTABLE_CAPACITY];
Pair *buckets[MAX_SIZE];
} ArrayHashMap;
/* 建構子 */
ArrayHashMap *newArrayHashMap() {
ArrayHashMap *hmap = malloc(sizeof(ArrayHashMap));
for (int i = 0; i < MAX_SIZE; i++) {
hmap->buckets[i] = NULL;
}
return hmap;
}
/* 析構函式 */
void delArrayHashMap(ArrayHashMap *hmap) {
for (int i = 0; i < HASHTABLE_CAPACITY; i++) {
for (int i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
free(hmap->buckets[i]->val);
free(hmap->buckets[i]);
@ -1503,13 +1506,13 @@ index = hash(key) % capacity
int i = 0, index = 0;
int total = 0;
/* 統計有效鍵值對數量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
entries = malloc(sizeof(Pair) * total);
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
entries[index].key = hmap->buckets[i]->key;
entries[index].val = malloc(strlen(hmap->buckets[i]->val) + 1);
@ -1527,13 +1530,13 @@ index = hash(key) % capacity
int i = 0, index = 0;
int total = 0;
/* 統計有效鍵值對數量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
keys = malloc(total * sizeof(int));
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
keys[index] = hmap->buckets[i]->key;
index++;
@ -1549,13 +1552,13 @@ index = hash(key) % capacity
int i = 0, index = 0;
int total = 0;
/* 統計有效鍵值對數量 */
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
total++;
}
}
vals = malloc(total * sizeof(char *));
for (i = 0; i < HASHTABLE_CAPACITY; i++) {
for (i = 0; i < MAX_SIZE; i++) {
if (hmap->buckets[i] != NULL) {
vals[index] = hmap->buckets[i]->val;
index++;

@ -340,51 +340,37 @@ comments: true
```c title="bucket_sort.c"
/* 桶排序 */
void bucketSort(float nums[], int size) {
// 初始化 k = n/2 個桶,預期向每個桶分配 2 個元素
int k = size / 2;
float **buckets = calloc(k, sizeof(float *));
for (int i = 0; i < k; i++) {
// 每個桶最多可以分配 size 個元素
buckets[i] = calloc(size, sizeof(float));
void bucketSort(float nums[], int n) {
int k = n / 2; // 初始化 k = n/2 個桶
int *sizes = malloc(k * sizeof(int)); // 記錄每個桶的大小
float **buckets = malloc(k * sizeof(float *)); // 動態陣列的陣列(桶)
for (int i = 0; i < k; ++i) {
// 為每個桶預分配足夠的空間
buckets[i] = (float *)malloc(n * sizeof(float));
sizes[i] = 0;
}
// 1. 將陣列元素分配到各個桶中
for (int i = 0; i < size; i++) {
// 輸入資料範圍為 [0, 1),使用 num * k 對映到索引範圍 [0, k-1]
int bucket_idx = nums[i] * k;
int j = 0;
// 如果桶中有資料且資料小於當前值 nums[i], 要將其放到當前桶的後面,相當於 cpp 中的 push_back
while (buckets[bucket_idx][j] > 0 && buckets[bucket_idx][j] < nums[i]) {
j++;
}
float temp = nums[i];
while (j < size && buckets[bucket_idx][j] > 0) {
swap(&temp, &buckets[bucket_idx][j]);
j++;
}
buckets[bucket_idx][j] = temp;
for (int i = 0; i < n; ++i) {
int idx = (int)(nums[i] * k);
buckets[idx][sizes[idx]++] = nums[i];
}
// 2. 對各個桶執行排序
for (int i = 0; i < k; i++) {
qsort(buckets[i], size, sizeof(float), compare_float);
for (int i = 0; i < k; ++i) {
qsort(buckets[i], sizes[i], sizeof(float), compare);
}
// 3. 走訪桶合併結果
for (int i = 0, j = 0; j < k; j++) {
for (int l = 0; l < size; l++) {
if (buckets[j][l] > 0) {
nums[i++] = buckets[j][l];
}
// 3. 合併排序後的桶
int idx = 0;
for (int i = 0; i < k; ++i) {
for (int j = 0; j < sizes[i]; ++j) {
nums[idx++] = buckets[i][j];
}
}
// 釋放上述分配的記憶體
for (int i = 0; i < k; i++) {
// 釋放記憶體
free(buckets[i]);
}
free(buckets);
}
```

Loading…
Cancel
Save