|
|
|
@ -125,15 +125,35 @@ comments: true
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="subset_sum_i_naive.go"
|
|
|
|
|
[class]{}-[func]{backtrackINaive}
|
|
|
|
|
/* 回溯算法:子集和 I */
|
|
|
|
|
func backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) {
|
|
|
|
|
// 子集和等于 target 时,记录解
|
|
|
|
|
if target == total {
|
|
|
|
|
newState := append([]int{}, *state...)
|
|
|
|
|
*res = append(*res, newState)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 遍历所有选择
|
|
|
|
|
for i := 0; i < len(*choices); i++ {
|
|
|
|
|
// 剪枝:若子集和超过 target ,则跳过该选择
|
|
|
|
|
if total+(*choices)[i] > target {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
// 尝试:做出选择,更新元素和 total
|
|
|
|
|
*state = append(*state, (*choices)[i])
|
|
|
|
|
// 进行下一轮选择
|
|
|
|
|
backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res)
|
|
|
|
|
// 回退:撤销选择,恢复到之前的状态
|
|
|
|
|
*state = (*state)[:len(*state)-1]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 求解子集和 I(包含重复子集) */
|
|
|
|
|
func subsetSumINaive(nums []int, target int) [][]int {
|
|
|
|
|
s := subset{}
|
|
|
|
|
state := make([]int, 0) // 状态(子集)
|
|
|
|
|
total := 0 // 子集和
|
|
|
|
|
res := make([][]int, 0) // 结果列表(子集列表)
|
|
|
|
|
s.backtrack(total, target, &state, &nums, &res)
|
|
|
|
|
backtrackSubsetSumINaive(total, target, &state, &nums, &res)
|
|
|
|
|
return res
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
@ -364,16 +384,38 @@ comments: true
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="subset_sum_i.go"
|
|
|
|
|
[class]{}-[func]{backtrackI}
|
|
|
|
|
/* 回溯算法:子集和 I */
|
|
|
|
|
func backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) {
|
|
|
|
|
// 子集和等于 target 时,记录解
|
|
|
|
|
if target == 0 {
|
|
|
|
|
newState := append([]int{}, *state...)
|
|
|
|
|
*res = append(*res, newState)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 遍历所有选择
|
|
|
|
|
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
|
|
|
|
for i := start; i < len(*choices); i++ {
|
|
|
|
|
// 剪枝一:若子集和超过 target ,则直接结束循环
|
|
|
|
|
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
|
|
|
|
if target-(*choices)[i] < 0 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
// 尝试:做出选择,更新 target, start
|
|
|
|
|
*state = append(*state, (*choices)[i])
|
|
|
|
|
// 进行下一轮选择
|
|
|
|
|
backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res)
|
|
|
|
|
// 回退:撤销选择,恢复到之前的状态
|
|
|
|
|
*state = (*state)[:len(*state)-1]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 求解子集和 I */
|
|
|
|
|
func subsetSumI(nums []int, target int) [][]int {
|
|
|
|
|
s := subsetI{}
|
|
|
|
|
state := make([]int, 0) // 状态(子集)
|
|
|
|
|
sort.Ints(nums) // 对 nums 进行排序
|
|
|
|
|
start := 0 // 遍历起始点
|
|
|
|
|
res := make([][]int, 0) // 结果列表(子集列表)
|
|
|
|
|
s.backtrack(start, target, &state, &nums, &res)
|
|
|
|
|
backtrackSubsetSumI(start, target, &state, &nums, &res)
|
|
|
|
|
return res
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
@ -614,16 +656,43 @@ comments: true
|
|
|
|
|
=== "Go"
|
|
|
|
|
|
|
|
|
|
```go title="subset_sum_ii.go"
|
|
|
|
|
[class]{}-[func]{backtrackII}
|
|
|
|
|
/* 回溯算法:子集和 II */
|
|
|
|
|
func backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) {
|
|
|
|
|
// 子集和等于 target 时,记录解
|
|
|
|
|
if target == 0 {
|
|
|
|
|
newState := append([]int{}, *state...)
|
|
|
|
|
*res = append(*res, newState)
|
|
|
|
|
return
|
|
|
|
|
}
|
|
|
|
|
// 遍历所有选择
|
|
|
|
|
// 剪枝二:从 start 开始遍历,避免生成重复子集
|
|
|
|
|
// 剪枝三:从 start 开始遍历,避免重复选择同一元素
|
|
|
|
|
for i := start; i < len(*choices); i++ {
|
|
|
|
|
// 剪枝一:若子集和超过 target ,则直接结束循环
|
|
|
|
|
// 这是因为数组已排序,后边元素更大,子集和一定超过 target
|
|
|
|
|
if target-(*choices)[i] < 0 {
|
|
|
|
|
break
|
|
|
|
|
}
|
|
|
|
|
// 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过
|
|
|
|
|
if i > start && (*choices)[i] == (*choices)[i-1] {
|
|
|
|
|
continue
|
|
|
|
|
}
|
|
|
|
|
// 尝试:做出选择,更新 target, start
|
|
|
|
|
*state = append(*state, (*choices)[i])
|
|
|
|
|
// 进行下一轮选择
|
|
|
|
|
backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res)
|
|
|
|
|
// 回退:撤销选择,恢复到之前的状态
|
|
|
|
|
*state = (*state)[:len(*state)-1]
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* 求解子集和 II */
|
|
|
|
|
func subsetSumII(nums []int, target int) [][]int {
|
|
|
|
|
s := subsetII{}
|
|
|
|
|
state := make([]int, 0) // 状态(子集)
|
|
|
|
|
sort.Ints(nums) // 对 nums 进行排序
|
|
|
|
|
start := 0 // 遍历起始点
|
|
|
|
|
res := make([][]int, 0) // 结果列表(子集列表)
|
|
|
|
|
s.backtrack(start, target, &state, &nums, &res)
|
|
|
|
|
backtrackSubsetSumII(start, target, &state, &nums, &res)
|
|
|
|
|
return res
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|