feat(go/dp): support dynamic programming (#622)

* feat(go/dp): support climbing stairs

* feat(go/dp): support knapsack

* feat(go/dp): coin_change & edit_distance
pull/651/head
Reanon 1 year ago committed by GitHub
parent 10e5e7499b
commit c1adeb2399
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,36 @@
// File: climbing_stairs_backtrack.go
// Created Time: 2023-07-18
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 回溯 */
func backtrack(choices []int, state, n int, res []int) {
// 当爬到第 n 阶时,方案数量加 1
if state == n {
res[0] = res[0] + 1
}
// 遍历所有选择
for _, choice := range choices {
// 剪枝:不允许越过第 n 阶
if state+choice > n {
break
}
// 尝试:做出选择,更新状态
backtrack(choices, state+choice, n, res)
// 回退
}
}
/* 爬楼梯:回溯 */
func climbingStairsBacktrack(n int) int {
// 可选择向上爬 1 或 2 阶
choices := []int{1, 2}
// 从第 0 阶开始爬
state := 0
res := make([]int, 1)
// 使用 res[0] 记录方案数量
res[0] = 0
backtrack(choices, state, n, res)
return res[0]
}

@ -0,0 +1,25 @@
// File: climbing_stairs_constraint_dp.go
// Created Time: 2023-07-18
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 带约束爬楼梯:动态规划 */
func climbingStairsConstraintDP(n int) int {
if n == 1 || n == 2 {
return n
}
// 初始化 dp 表,用于存储子问题的解
dp := make([][3]int, n+1)
// 初始状态:预设最小子问题的解
dp[1][1] = 1
dp[1][2] = 0
dp[2][1] = 0
dp[2][2] = 1
// 状态转移:从较小子问题逐步求解较大子问题
for i := 3; i <= n; i++ {
dp[i][1] = dp[i-1][2]
dp[i][2] = dp[i-2][1] + dp[i-2][2]
}
return dp[n][1] + dp[n][2]
}

@ -0,0 +1,21 @@
// File: climbing_stairs_dfs.go
// Created Time: 2023-07-18
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 搜索 */
func dfs(i int) int {
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 || i == 2 {
return i
}
// dp[i] = dp[i-1] + dp[i-2]
count := dfs(i-1) + dfs(i-2)
return count
}
/* 爬楼梯:搜索 */
func climbingStairsDFS(n int) int {
return dfs(n)
}

@ -0,0 +1,32 @@
// File: climbing_stairs_dfs_mem.go
// Created Time: 2023-07-18
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 记忆化搜索 */
func dfsMem(i int, mem []int) int {
// 已知 dp[1] 和 dp[2] ,返回之
if i == 1 || i == 2 {
return i
}
// 若存在记录 dp[i] ,则直接返回之
if mem[i] != -1 {
return mem[i]
}
// dp[i] = dp[i-1] + dp[i-2]
count := dfsMem(i-1, mem) + dfsMem(i-2, mem)
// 记录 dp[i]
mem[i] = count
return count
}
/* 爬楼梯:记忆化搜索 */
func climbingStairsDFSMem(n int) int {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
mem := make([]int, n+1)
for i := range mem {
mem[i] = -1
}
return dfsMem(n, mem)
}

@ -0,0 +1,35 @@
// File: climbing_stairs_dp.go
// Created Time: 2023-07-18
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 爬楼梯:动态规划 */
func climbingStairsDP(n int) int {
if n == 1 || n == 2 {
return n
}
// 初始化 dp 表,用于存储子问题的解
dp := make([]int, n+1)
// 初始状态:预设最小子问题的解
dp[1] = 1
dp[2] = 2
// 状态转移:从较小子问题逐步求解较大子问题
for i := 3; i <= n; i++ {
dp[i] = dp[i-1] + dp[i-2]
}
return dp[n]
}
/* 爬楼梯:状态压缩后的动态规划 */
func climbingStairsDPComp(n int) int {
if n == 1 || n == 2 {
return n
}
a, b := 1, 2
// 状态转移:从较小子问题逐步求解较大子问题
for i := 3; i <= n; i++ {
a, b = b, a+b
}
return b
}

@ -0,0 +1,57 @@
// File: climbing_stairs_test.go
// Created Time: 2023-07-18
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import (
"fmt"
"testing"
)
func TestClimbingStairsBacktrack(t *testing.T) {
n := 9
res := climbingStairsBacktrack(n)
fmt.Printf("爬 %d 阶楼梯共有 %d 种方案\n", n, res)
}
func TestClimbingStairsDFS(t *testing.T) {
n := 9
res := climbingStairsDFS(n)
fmt.Printf("爬 %d 阶楼梯共有 %d 种方案\n", n, res)
}
func TestClimbingStairsDFSMem(t *testing.T) {
n := 9
res := climbingStairsDFSMem(n)
fmt.Printf("爬 %d 阶楼梯共有 %d 种方案\n", n, res)
}
func TestClimbingStairsDP(t *testing.T) {
n := 9
res := climbingStairsDP(n)
fmt.Printf("爬 %d 阶楼梯共有 %d 种方案\n", n, res)
}
func TestClimbingStairsDPComp(t *testing.T) {
n := 9
res := climbingStairsDPComp(n)
fmt.Printf("爬 %d 阶楼梯共有 %d 种方案\n", n, res)
}
func TestClimbingStairsConstraintDP(t *testing.T) {
n := 9
res := climbingStairsConstraintDP(n)
fmt.Printf("爬 %d 阶楼梯共有 %d 种方案\n", n, res)
}
func TestMinCostClimbingStairsDPComp(t *testing.T) {
cost := []int{0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1}
fmt.Printf("输入楼梯的代价列表为 %v\n", cost)
res := minCostClimbingStairsDP(cost)
fmt.Printf("爬完楼梯的最低代价为 %d\n", res)
res = minCostClimbingStairsDPComp(cost)
fmt.Printf("爬完楼梯的最低代价为 %d\n", res)
}

@ -0,0 +1,66 @@
// File: coin_change.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import "math"
/* 零钱兑换:动态规划 */
func coinChangeDP(coins []int, amt int) int {
n := len(coins)
max := amt + 1
// 初始化 dp 表
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, amt+1)
}
// 状态转移:首行首列
for a := 1; a <= amt; a++ {
dp[0][a] = max
}
// 状态转移:其余行列
for i := 1; i <= n; i++ {
for a := 1; a <= amt; a++ {
if coins[i-1] > a {
// 若超过背包容量,则不选硬币 i
dp[i][a] = dp[i-1][a]
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[i][a] = int(math.Min(float64(dp[i-1][a]), float64(dp[i][a-coins[i-1]]+1)))
}
}
}
if dp[n][amt] != max {
return dp[n][amt]
}
return -1
}
/* 零钱兑换:动态规划 */
func coinChangeDPComp(coins []int, amt int) int {
n := len(coins)
max := amt + 1
// 初始化 dp 表
dp := make([]int, amt+1)
for i := 1; i <= amt; i++ {
dp[i] = max
}
// 状态转移
for i := 1; i <= n; i++ {
// 倒序遍历
for a := 1; a <= amt; a++ {
if coins[i-1] > a {
// 若超过背包容量,则不选硬币 i
dp[a] = dp[a]
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[a] = int(math.Min(float64(dp[a]), float64(dp[a-coins[i-1]]+1)))
}
}
}
if dp[amt] != max {
return dp[amt]
}
return -1
}

@ -0,0 +1,54 @@
// File: coin_change_ii.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 零钱兑换 II动态规划 */
func coinChangeIIDP(coins []int, amt int) int {
n := len(coins)
// 初始化 dp 表
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, amt+1)
}
// 初始化首列
for i := 0; i <= n; i++ {
dp[i][0] = 1
}
// 状态转移:其余行列
for i := 1; i <= n; i++ {
for a := 1; a <= amt; a++ {
if coins[i-1] > a {
// 若超过背包容量,则不选硬币 i
dp[i][a] = dp[i-1][a]
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[i][a] = dp[i-1][a] + dp[i][a-coins[i-1]]
}
}
}
return dp[n][amt]
}
/* 零钱兑换 II状态压缩后的动态规划 */
func coinChangeIIDPComp(coins []int, amt int) int {
n := len(coins)
// 初始化 dp 表
dp := make([]int, amt+1)
dp[0] = 1
// 状态转移
for i := 1; i <= n; i++ {
// 倒序遍历
for a := 1; a <= amt; a++ {
if coins[i-1] > a {
// 若超过背包容量,则不选硬币 i
dp[a] = dp[a]
} else {
// 不选和选硬币 i 这两种方案之和
dp[a] = dp[a] + dp[a-coins[i-1]]
}
}
}
return dp[amt]
}

@ -0,0 +1,23 @@
// File: coin_change_test.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import (
"fmt"
"testing"
)
func TestCoinChange(t *testing.T) {
coins := []int{1, 2, 5}
amt := 4
// 动态规划
res := coinChangeDP(coins, amt)
fmt.Printf("凑到目标金额所需的最少硬币数量为 %d\n", res)
// 状态压缩后的动态规划
res = coinChangeDPComp(coins, amt)
fmt.Printf("凑到目标金额所需的最少硬币数量为 %d\n", res)
}

@ -0,0 +1,129 @@
// File: edit_distance.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
/* 编辑距离:暴力搜索 */
func editDistanceDFS(s string, t string, i int, j int) int {
// 若 s 和 t 都为空,则返回 0
if i == 0 && j == 0 {
return 0
}
// 若 s 为空,则返回 t 长度
if i == 0 {
return j
}
// 若 t 为空,则返回 s 长度
if j == 0 {
return i
}
// 若两字符相等,则直接跳过此两字符
if s[i-1] == t[j-1] {
return editDistanceDFS(s, t, i-1, j-1)
}
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
insert := editDistanceDFS(s, t, i, j-1)
deleted := editDistanceDFS(s, t, i-1, j)
replace := editDistanceDFS(s, t, i-1, j-1)
// 返回最少编辑步数
return MinInt(MinInt(insert, deleted), replace) + 1
}
/* 编辑距离:记忆化搜索 */
func editDistanceDFSMem(s string, t string, mem [][]int, i int, j int) int {
// 若 s 和 t 都为空,则返回 0
if i == 0 && j == 0 {
return 0
}
// 若 s 为空,则返回 t 长度
if i == 0 {
return j
}
// 若 t 为空,则返回 s 长度
if j == 0 {
return i
}
// 若已有记录,则直接返回之
if mem[i][j] != -1 {
return mem[i][j]
}
// 若两字符相等,则直接跳过此两字符
if s[i-1] == t[j-1] {
return editDistanceDFSMem(s, t, mem, i-1, j-1)
}
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
insert := editDistanceDFSMem(s, t, mem, i, j-1)
deleted := editDistanceDFSMem(s, t, mem, i-1, j)
replace := editDistanceDFSMem(s, t, mem, i-1, j-1)
// 记录并返回最少编辑步数
mem[i][j] = MinInt(MinInt(insert, deleted), replace) + 1
return mem[i][j]
}
/* 编辑距离:动态规划 */
func editDistanceDP(s string, t string) int {
n := len(s)
m := len(t)
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, m+1)
}
// 状态转移:首行首列
for i := 1; i <= n; i++ {
dp[i][0] = i
}
for j := 1; j <= m; j++ {
dp[0][j] = j
}
// 状态转移:其余行列
for i := 1; i <= n; i++ {
for j := 1; j <= m; j++ {
if s[i-1] == t[j-1] {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i-1][j-1]
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1
}
}
}
return dp[n][m]
}
/* 编辑距离:状态压缩后的动态规划 */
func editDistanceDPComp(s string, t string) int {
n := len(s)
m := len(t)
dp := make([]int, m+1)
// 状态转移:首行
for j := 1; j <= m; j++ {
dp[j] = j
}
// 状态转移:其余行
for i := 1; i <= n; i++ {
// 状态转移:首列
leftUp := dp[0] // 暂存 dp[i-1, j-1]
dp[0] = i
// 状态转移:其余列
for j := 1; j <= m; j++ {
temp := dp[j]
if s[i-1] == t[j-1] {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftUp
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1
}
leftUp = temp // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m]
}
func MinInt(a, b int) int {
if a < b {
return a
}
return b
}

@ -0,0 +1,40 @@
// File: edit_distance_test.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import (
"fmt"
"testing"
)
func TestEditDistanceDFS(test *testing.T) {
s := "bag"
t := "pack"
n := len(s)
m := len(t)
// 暴力搜索
res := editDistanceDFS(s, t, n, m)
fmt.Printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res)
// 记忆化搜索
mem := make([][]int, n+1)
for i := 0; i <= n; i++ {
mem[i] = make([]int, m+1)
for j := 0; j <= m; j++ {
mem[i][j] = -1
}
}
res = editDistanceDFSMem(s, t, mem, n, m)
fmt.Printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res)
// 动态规划
res = editDistanceDP(s, t)
fmt.Printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res)
// 状态压缩后的动态规划
res = editDistanceDPComp(s, t)
fmt.Printf("将 %s 更改为 %s 最少需要编辑 %d 步\n", s, t, res)
}

@ -0,0 +1,87 @@
// File: knapsack.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import "math"
/* 0-1 背包:暴力搜索 */
func knapsackDFS(wgt, val []int, i, c int) int {
// 若已选完所有物品或背包无容量,则返回价值 0
if i == 0 || c == 0 {
return 0
}
// 若超过背包容量,则只能不放入背包
if wgt[i-1] > c {
return knapsackDFS(wgt, val, i-1, c)
}
// 计算不放入和放入物品 i 的最大价值
no := knapsackDFS(wgt, val, i-1, c)
yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]
// 返回两种方案中价值更大的那一个
return int(math.Max(float64(no), float64(yes)))
}
/* 0-1 背包:记忆化搜索 */
func knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {
// 若已选完所有物品或背包无容量,则返回价值 0
if i == 0 || c == 0 {
return 0
}
// 若已有记录,则直接返回
if mem[i][c] != -1 {
return mem[i][c]
}
// 若超过背包容量,则只能不放入背包
if wgt[i-1] > c {
return knapsackDFSMem(wgt, val, mem, i-1, c)
}
// 计算不放入和放入物品 i 的最大价值
no := knapsackDFSMem(wgt, val, mem, i-1, c)
yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]
// 返回两种方案中价值更大的那一个
mem[i][c] = int(math.Max(float64(no), float64(yes)))
return mem[i][c]
}
/* 0-1 背包:动态规划 */
func knapsackDP(wgt, val []int, cap int) int {
n := len(wgt)
// 初始化 dp 表
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, cap+1)
}
// 状态转移
for i := 1; i <= n; i++ {
for c := 1; c <= cap; c++ {
if wgt[i-1] > c {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i-1][c]
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))
}
}
}
return dp[n][cap]
}
/* 0-1 背包:状态压缩后的动态规划 */
func knapsackDPComp(wgt, val []int, cap int) int {
n := len(wgt)
// 初始化 dp 表
dp := make([]int, cap+1)
// 状态转移
for i := 1; i <= n; i++ {
// 倒序遍历
for c := cap; c >= 1; c-- {
if wgt[i-1] <= c {
// 不选和选物品 i 这两种方案的较大值
dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))
}
}
}
return dp[cap]
}

@ -0,0 +1,54 @@
// File: knapsack_test.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import (
"fmt"
"testing"
)
func TestKnapsack(t *testing.T) {
wgt := []int{10, 20, 30, 40, 50}
val := []int{50, 120, 150, 210, 240}
c := 50
n := len(wgt)
// 暴力搜索
res := knapsackDFS(wgt, val, n, c)
fmt.Printf("不超过背包容量的最大物品价值为 %d\n", res)
// 记忆化搜索
mem := make([][]int, n+1)
for i := 0; i <= n; i++ {
mem[i] = make([]int, c+1)
for j := 0; j <= c; j++ {
mem[i][j] = -1
}
}
res = knapsackDFSMem(wgt, val, mem, n, c)
fmt.Printf("不超过背包容量的最大物品价值为 %d\n", res)
// 动态规划
res = knapsackDP(wgt, val, c)
fmt.Printf("不超过背包容量的最大物品价值为 %d\n", res)
// 状态压缩后的动态规划
res = knapsackDPComp(wgt, val, c)
fmt.Printf("不超过背包容量的最大物品价值为 %d\n", res)
}
func TestUnboundedKnapsack(t *testing.T) {
wgt := []int{1, 2, 3}
val := []int{5, 11, 15}
c := 4
// 动态规划
res := unboundedKnapsackDP(wgt, val, c)
fmt.Printf("不超过背包容量的最大物品价值为 %d\n", res)
// 状态压缩后的动态规划
res = unboundedKnapsackDPComp(wgt, val, c)
fmt.Printf("不超过背包容量的最大物品价值为 %d\n", res)
}

@ -0,0 +1,42 @@
// File: min_cost_climbing_stairs_dp.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import "math"
/* 爬楼梯最小代价:动态规划 */
func minCostClimbingStairsDP(cost []int) int {
n := len(cost) - 1
if n == 1 || n == 2 {
return cost[n]
}
// 初始化 dp 表,用于存储子问题的解
dp := make([]int, n+1)
// 初始状态:预设最小子问题的解
dp[1] = cost[1]
dp[2] = cost[2]
// 状态转移:从较小子问题逐步求解较大子问题
for i := 3; i <= n; i++ {
dp[i] = int(math.Min(float64(dp[i-1]), float64(dp[i-2]+cost[i])))
}
return dp[n]
}
/* 爬楼梯最小代价:状态压缩后的动态规划 */
func minCostClimbingStairsDPComp(cost []int) int {
n := len(cost) - 1
if n == 1 || n == 2 {
return cost[n]
}
// 初始状态:预设最小子问题的解
a, b := cost[1], cost[2]
// 状态转移:从较小子问题逐步求解较大子问题
for i := 3; i <= n; i++ {
tmp := b
b = int(math.Min(float64(a), float64(tmp+cost[i])))
a = tmp
}
return b
}

@ -0,0 +1,94 @@
// File: min_path_sum.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import "math"
/* 最小路径和:暴力搜索 */
func minPathSumDFS(grid [][]int, i, j int) int {
// 若为左上角单元格,则终止搜索
if i == 0 && j == 0 {
return grid[0][0]
}
// 若行列索引越界,则返回 +∞ 代价
if i < 0 || j < 0 {
return math.MaxInt
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
left := minPathSumDFS(grid, i-1, j)
up := minPathSumDFS(grid, i, j-1)
// 返回从左上角到 (i, j) 的最小路径代价
return int(math.Min(float64(left), float64(up))) + grid[i][j]
}
/* 最小路径和:记忆化搜索 */
func minPathSumDFSMem(grid, mem [][]int, i, j int) int {
// 若为左上角单元格,则终止搜索
if i == 0 && j == 0 {
return grid[0][0]
}
// 若行列索引越界,则返回 +∞ 代价
if i < 0 || j < 0 {
return math.MaxInt
}
// 若已有记录,则直接返回
if mem[i][j] != -1 {
return mem[i][j]
}
// 左边和上边单元格的最小路径代价
left := minPathSumDFSMem(grid, mem, i-1, j)
up := minPathSumDFSMem(grid, mem, i, j-1)
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]
return mem[i][j]
}
/* 最小路径和:动态规划 */
func minPathSumDP(grid [][]int) int {
n, m := len(grid), len(grid[0])
// 初始化 dp 表
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, m)
}
dp[0][0] = grid[0][0]
// 状态转移:首行
for j := 1; j < m; j++ {
dp[0][j] = dp[0][j-1] + grid[0][j]
}
// 状态转移:首列
for i := 1; i < n; i++ {
dp[i][0] = dp[i-1][0] + grid[i][0]
}
// 状态转移:其余行列
for i := 1; i < n; i++ {
for j := 1; j < m; j++ {
dp[i][j] = int(math.Min(float64(dp[i][j-1]), float64(dp[i-1][j]))) + grid[i][j]
}
}
return dp[n-1][m-1]
}
/* 最小路径和:状态压缩后的动态规划 */
func minPathSumDPComp(grid [][]int) int {
n, m := len(grid), len(grid[0])
// 初始化 dp 表
dp := make([]int, m)
// 状态转移:首行
dp[0] = grid[0][0]
for j := 1; j < m; j++ {
dp[j] = dp[j-1] + grid[0][j]
}
// 状态转移:其余行列
for i := 1; i < n; i++ {
// 状态转移:首列
dp[0] = dp[0] + grid[i][0]
// 状态转移:其余列
for j := 1; j < m; j++ {
dp[j] = int(math.Min(float64(dp[j-1]), float64(dp[j]))) + grid[i][j]
}
}
return dp[m-1]
}

@ -0,0 +1,43 @@
// File: min_path_sum_test.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import (
"fmt"
"testing"
)
func TestMinPathSum(t *testing.T) {
grid := [][]int{
{1, 3, 1, 5},
{2, 2, 4, 2},
{5, 3, 2, 1},
{4, 3, 5, 2},
}
n, m := len(grid), len(grid[0])
// 暴力搜索
res := minPathSumDFS(grid, n-1, m-1)
fmt.Printf("从左上角到右下角的做小路径和为 %d\n", res)
// 记忆化搜索
mem := make([][]int, n)
for i := 0; i < n; i++ {
mem[i] = make([]int, m)
for j := 0; j < m; j++ {
mem[i][j] = -1
}
}
res = minPathSumDFSMem(grid, mem, n-1, m-1)
fmt.Printf("从左上角到右下角的做小路径和为 %d\n", res)
// 动态规划
res = minPathSumDP(grid)
fmt.Printf("从左上角到右下角的做小路径和为 %d\n", res)
// 状态压缩后的动态规划
res = minPathSumDPComp(grid)
fmt.Printf("从左上角到右下角的做小路径和为 %d\n", res)
}

@ -0,0 +1,50 @@
// File: unbounded_knapsack.go
// Created Time: 2023-07-23
// Author: Reanon (793584285@qq.com)
package chapter_dynamic_programming
import "math"
/* 完全背包:动态规划 */
func unboundedKnapsackDP(wgt, val []int, cap int) int {
n := len(wgt)
// 初始化 dp 表
dp := make([][]int, n+1)
for i := 0; i <= n; i++ {
dp[i] = make([]int, cap+1)
}
// 状态转移
for i := 1; i <= n; i++ {
for c := 1; c <= cap; c++ {
if wgt[i-1] > c {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i-1][c]
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i][c-wgt[i-1]]+val[i-1])))
}
}
}
return dp[n][cap]
}
/* 完全背包:状态压缩后的动态规划 */
func unboundedKnapsackDPComp(wgt, val []int, cap int) int {
n := len(wgt)
// 初始化 dp 表
dp := make([]int, cap+1)
// 状态转移
for i := 1; i <= n; i++ {
for c := 1; c <= cap; c++ {
if wgt[i-1] > c {
// 若超过背包容量,则不选物品 i
dp[c] = dp[c]
} else {
// 不选和选物品 i 这两种方案的较大值
dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))
}
}
}
return dp[cap]
}
Loading…
Cancel
Save