|
|
@ -831,16 +831,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 常数阶 */
|
|
|
|
[class]{}-[func]{constant}
|
|
|
|
int constant(int n) {
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
int size = 100000;
|
|
|
|
|
|
|
|
int i = 0;
|
|
|
|
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
|
|
|
|
|
|
count ++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -904,14 +895,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 线性阶 */
|
|
|
|
[class]{}-[func]{linear}
|
|
|
|
int linear(int n) {
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
|
|
|
count ++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -977,15 +961,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 线性阶(遍历数组) */
|
|
|
|
[class]{}-[func]{arrayTraversal}
|
|
|
|
int arrayTraversal(int *nums, int n) {
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
// 循环次数与数组长度成正比
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
|
|
|
count ++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1049,17 +1025,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 平方阶 */
|
|
|
|
[class]{}-[func]{quadratic}
|
|
|
|
int quadratic(int n) {
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
// 循环次数与数组长度成平方关系
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
|
|
|
|
|
count ++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1129,26 +1095,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 平方阶(冒泡排序) */
|
|
|
|
[class]{}-[func]{bubbleSort}
|
|
|
|
int bubbleSort(int *nums, int n) {
|
|
|
|
|
|
|
|
int count = 0; // 计数器
|
|
|
|
|
|
|
|
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
|
|
|
|
|
|
|
for (int i = n - 1; i > 0; i--) {
|
|
|
|
|
|
|
|
// 内循环:冒泡操作
|
|
|
|
|
|
|
|
for (int j = 0; j < i; j++) {
|
|
|
|
|
|
|
|
if (nums[j] > nums [j + 1])
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
// 交换 nums[j] 与 nums[j + 1]
|
|
|
|
|
|
|
|
int tmp = nums[j];
|
|
|
|
|
|
|
|
nums[j] = nums[j + 1];
|
|
|
|
|
|
|
|
nums[j + 1] = tmp;
|
|
|
|
|
|
|
|
count += 3; // 元素交换包含 3 个单元操作
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1216,20 +1163,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 指数阶(循环实现) */
|
|
|
|
[class]{}-[func]{exponential}
|
|
|
|
int exponential(int n) {
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
int bas = 1;
|
|
|
|
|
|
|
|
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
|
|
|
for (int j = 0; j < bas; j++) {
|
|
|
|
|
|
|
|
count++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
bas *= 2;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1295,11 +1229,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 指数阶(递归实现) */
|
|
|
|
[class]{}-[func]{expRecur}
|
|
|
|
int expRecur(int n) {
|
|
|
|
|
|
|
|
if (n == 1) return 1;
|
|
|
|
|
|
|
|
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1367,15 +1297,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 对数阶(循环实现) */
|
|
|
|
[class]{}-[func]{logarithmic}
|
|
|
|
int logarithmic(float n) {
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
while (n > 1) {
|
|
|
|
|
|
|
|
n = n / 2;
|
|
|
|
|
|
|
|
count++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1441,11 +1363,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 对数阶(递归实现) */
|
|
|
|
[class]{}-[func]{logRecur}
|
|
|
|
int logRecur(float n) {
|
|
|
|
|
|
|
|
if (n <= 1) return 0;
|
|
|
|
|
|
|
|
return logRecur(n / 2) + 1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1511,16 +1429,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 线性对数阶 */
|
|
|
|
[class]{}-[func]{linearLogRecur}
|
|
|
|
int linearLogRecur(float n) {
|
|
|
|
|
|
|
|
if (n <= 1) return 1;
|
|
|
|
|
|
|
|
int count = linearLogRecur(n / 2) +
|
|
|
|
|
|
|
|
linearLogRecur(n / 2);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
|
|
|
count ++;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
@ -1594,15 +1503,7 @@ $$
|
|
|
|
=== "C"
|
|
|
|
=== "C"
|
|
|
|
|
|
|
|
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
```c title="time_complexity.c"
|
|
|
|
/* 阶乘阶(递归实现) */
|
|
|
|
[class]{}-[func]{factorialRecur}
|
|
|
|
int factorialRecur(int n) {
|
|
|
|
|
|
|
|
if (n == 0) return 1;
|
|
|
|
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
|
|
|
|
count += factorialRecur(n - 1);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
=== "C#"
|
|
|
|
=== "C#"
|
|
|
|