add the section of dp solution pipeline (#588)
@ -0,0 +1,102 @@
|
||||
"""
|
||||
File: min_path_sum.py
|
||||
Created Time: 2023-07-04
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
from math import inf
|
||||
|
||||
|
||||
def min_path_sum_dfs(grid, i, j):
|
||||
"""最小路径和:暴力搜索"""
|
||||
# 若为左上角单元格,则终止搜索
|
||||
if i == 0 and j == 0:
|
||||
return grid[0][0]
|
||||
# 若行列索引越界,则返回 +∞ 代价
|
||||
if i < 0 or j < 0:
|
||||
return inf
|
||||
# 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
left = min_path_sum_dfs(grid, i - 1, j)
|
||||
up = min_path_sum_dfs(grid, i, j - 1)
|
||||
# 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) + grid[i][j]
|
||||
|
||||
|
||||
def min_path_sum_dfs_mem(grid, mem, i, j):
|
||||
"""最小路径和:记忆化搜索"""
|
||||
# 若为左上角单元格,则终止搜索
|
||||
if i == 0 and j == 0:
|
||||
return grid[0][0]
|
||||
# 若行列索引越界,则返回 +∞ 代价
|
||||
if i < 0 or j < 0:
|
||||
return inf
|
||||
# 若已有记录,则直接返回
|
||||
if mem[i][j] != -1:
|
||||
return mem[i][j]
|
||||
# 左边和上边单元格的最小路径代价
|
||||
left = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
||||
up = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
||||
# 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) + grid[i][j]
|
||||
return mem[i][j]
|
||||
|
||||
|
||||
def min_path_sum_dp(grid):
|
||||
"""最小路径和:动态规划"""
|
||||
n, m = len(grid), len(grid[0])
|
||||
# 初始化 dp 表
|
||||
dp = [[0] * m for _ in range(n)]
|
||||
dp[0][0] = grid[0][0]
|
||||
# 状态转移:首行
|
||||
for j in range(1, m):
|
||||
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
||||
# 状态转移:首列
|
||||
for i in range(1, n):
|
||||
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
||||
# 状态转移:其余行列
|
||||
for i in range(1, n):
|
||||
for j in range(1, m):
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
||||
return dp[n - 1][m - 1]
|
||||
|
||||
|
||||
def min_path_sum_dp_comp(grid):
|
||||
"""最小路径和:状态压缩后的动态规划"""
|
||||
n, m = len(grid), len(grid[0])
|
||||
# 初始化 dp 表
|
||||
dp = [0] * m
|
||||
# 状态转移:首行
|
||||
dp[0] = grid[0][0]
|
||||
for j in range(1, m):
|
||||
dp[j] = dp[j - 1] + grid[0][j]
|
||||
# 状态转移:其余行
|
||||
for i in range(1, n):
|
||||
# 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0]
|
||||
# 状态转移:其余列
|
||||
for j in range(1, m):
|
||||
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
||||
return dp[m - 1]
|
||||
|
||||
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
|
||||
n, m = len(grid), len(grid[0])
|
||||
|
||||
# 暴力搜索
|
||||
res = min_path_sum_dfs(grid, n - 1, m - 1)
|
||||
print(res)
|
||||
|
||||
# 记忆化搜索
|
||||
mem = [[-1] * m for _ in range(n)]
|
||||
res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1)
|
||||
print(res)
|
||||
|
||||
# 动态规划
|
||||
res = min_path_sum_dp(grid)
|
||||
print(res)
|
||||
|
||||
# 状态压缩后的动态规划
|
||||
res = min_path_sum_dp_comp(grid)
|
||||
print(res)
|
After Width: | Height: | Size: 100 KiB |
After Width: | Height: | Size: 78 KiB |
After Width: | Height: | Size: 41 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 44 KiB |
After Width: | Height: | Size: 59 KiB |
After Width: | Height: | Size: 52 KiB |
After Width: | Height: | Size: 52 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 52 KiB |
After Width: | Height: | Size: 52 KiB |
After Width: | Height: | Size: 51 KiB |
After Width: | Height: | Size: 52 KiB |
After Width: | Height: | Size: 48 KiB |
After Width: | Height: | Size: 65 KiB |
After Width: | Height: | Size: 57 KiB |
After Width: | Height: | Size: 63 KiB |