Add Unbounded knapsack in C code (#832)
* Update vector.h 增加功能列表: 获取向量的第 i 个元素 设置向量的第 i 个元素 向量扩容 向量缩容 向量插入元素 向量删除元素 向量交换元素 向量是否为空 向量是否已满 向量是否相等 对向量内部进行排序(升序/降序) 对向量某段数据排序(升序/降序) * Create hanota.c * 新增binary_search_recur.c * Update vector.h * Delete codes/c/chapter_divide_and_conquer directory * Update vector.h * Create binary_search_recur.c * Delete codes/chapter_divide_and_conquer directory * Update vector.h * old vector.h * Create unbounded_knapsack.c * Update unbounded_knapsack.c * Update unbounded_knapsack.c * Create CMakeLists.txt * Update unbounded_knapsack.c --------- Co-authored-by: Yudong Jin <krahets@163.com>pull/833/head^2
parent
1364bc52e7
commit
d75a2eb691
@ -1,3 +1,4 @@
|
|||||||
|
add_executable(min_cost_climbing_stairs_dp min_cost_climbing_stairs_dp.c)
|
||||||
add_executable(min_path_sum min_path_sum.c)
|
add_executable(min_path_sum min_path_sum.c)
|
||||||
add_executable(knapsack knapsack.c)
|
add_executable(knapsack knapsack.c)
|
||||||
add_executable(min_cost_climbing_stairs_dp min_cost_climbing_stairs_dp.c)
|
add_executable(unbounded_knapsack unbounded_knapsack.c)
|
||||||
|
@ -0,0 +1,72 @@
|
|||||||
|
/**
|
||||||
|
* File: unbounded_knapsack.c
|
||||||
|
* Created Time: 2023-10-02
|
||||||
|
* Author: Zuoxun (845242523@qq.com)
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "../utils/common.h"
|
||||||
|
|
||||||
|
/* 求最大值 */
|
||||||
|
int max(int a, int b) {
|
||||||
|
return a > b ? a : b;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* 完全背包:动态规划 */
|
||||||
|
int unboundedKnapsackDP(int wgt[], int val[], int cap, int wgtSize) {
|
||||||
|
int n = wgtSize;
|
||||||
|
// 初始化 dp 表
|
||||||
|
int dp[n + 1][cap + 1];
|
||||||
|
memset(dp, 0, sizeof(dp));
|
||||||
|
// 状态转移
|
||||||
|
for (int i = 1; i <= n; i++) {
|
||||||
|
for (int c = 1; c <= cap; c++) {
|
||||||
|
if (wgt[i - 1] > c) {
|
||||||
|
// 若超过背包容量,则不选物品 i
|
||||||
|
dp[i][c] = dp[i - 1][c];
|
||||||
|
} else {
|
||||||
|
// 不选和选物品 i 这两种方案的较大值
|
||||||
|
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return dp[n][cap];
|
||||||
|
}
|
||||||
|
|
||||||
|
/* 完全背包:空间优化后的动态规划 */
|
||||||
|
int unboundedKnapsackDPComp(int wgt[], int val[], int cap, int wgtSize) {
|
||||||
|
int n = wgtSize;
|
||||||
|
// 初始化 dp 表
|
||||||
|
int dp[cap + 1];
|
||||||
|
memset(dp, 0, sizeof(dp));
|
||||||
|
// 状态转移
|
||||||
|
for (int i = 1; i <= n; i++) {
|
||||||
|
for (int c = 1; c <= cap; c++) {
|
||||||
|
if (wgt[i - 1] > c) {
|
||||||
|
// 若超过背包容量,则不选物品 i
|
||||||
|
dp[c] = dp[c];
|
||||||
|
} else {
|
||||||
|
// 不选和选物品 i 这两种方案的较大值
|
||||||
|
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return dp[cap];
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Driver code */
|
||||||
|
int main() {
|
||||||
|
int wgt[] = {1, 2, 3};
|
||||||
|
int val[] = {5, 11, 15};
|
||||||
|
int wgtSize = sizeof(wgt) / sizeof(wgt[0]);
|
||||||
|
int cap = 4;
|
||||||
|
|
||||||
|
// 动态规划
|
||||||
|
int res = unboundedKnapsackDP(wgt, val, cap, wgtSize);
|
||||||
|
printf("不超过背包容量的最大物品价值为 %d\n", res);
|
||||||
|
|
||||||
|
// 空间优化后的动态规划
|
||||||
|
res = unboundedKnapsackDPComp(wgt, val, cap, wgtSize);
|
||||||
|
printf("不超过背包容量的最大物品价值为 %d\n", res);
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Reference in new issue