|
|
|
@ -654,25 +654,25 @@ $$
|
|
|
|
|
|
|
|
|
|
在该问题中,**下一步选择不能由当前状态(当前楼梯阶数)独立决定,还和前一个状态(上轮楼梯阶数)有关**。如果上一轮是跳 $1$ 阶上来的,那么下一轮就必须跳 $2$ 阶。
|
|
|
|
|
|
|
|
|
|
不难发现,此问题已不满足无后效性,状态转移方程 $dp[i] = dp[i-1] + dp[i-2]$ 也随之失效,因为 $dp[i-1]$ 代表本轮跳 $1$ 阶,但其中包含了许多“上一轮跳 $1$ 阶上来的”方案,而为了满足约束,我们不能将 $dp[i-1]$ 直接计入 $dp[i]$ 中。
|
|
|
|
|
不难发现,此问题已不满足无后效性,状态转移方程 $dp[i] = dp[i-1] + dp[i-2]$ 也失效了,因为 $dp[i-1]$ 代表本轮跳 $1$ 阶,但其中包含了许多“上一轮跳 $1$ 阶上来的”方案,而为了满足约束,我们不能将 $dp[i-1]$ 直接计入 $dp[i]$ 中。
|
|
|
|
|
|
|
|
|
|
为了解决该问题,我们需要扩展状态定义:**状态 $[i, j]$ 表示处在第 $i$ 阶、并且上一轮跳了 $j$ 阶**,$dp[i, j]$ 表示该状态下的方案数量。此状态定义有效地区分了上一轮跳了 $1$ 阶还是 $2$ 阶,我们可以据此来决定下一步该怎么跳:
|
|
|
|
|
为了解决该问题,我们需要扩展状态定义:**状态 $[i, j]$ 表示处在第 $i$ 阶、并且上一轮跳了 $j$ 阶**,其中 $j \in \{1, 2\}$ 。此状态定义有效地区分了上一轮跳了 $1$ 阶还是 $2$ 阶,我们可以据此来决定下一步该怎么跳:
|
|
|
|
|
|
|
|
|
|
- 当 $j$ 等于 $1$ ,即上一轮跳了 $1$ 阶时,这一轮只可选择跳 $2$ 阶;
|
|
|
|
|
- 当 $j$ 等于 $2$ ,即上一轮跳了 $2$ 阶时,这一步可选择跳 $1$ 阶或跳 $2$ 阶;
|
|
|
|
|
- 当 $j$ 等于 $1$ ,即上一轮跳了 $1$ 阶时,这一轮只能选择跳 $2$ 阶;
|
|
|
|
|
- 当 $j$ 等于 $2$ ,即上一轮跳了 $2$ 阶时,这一轮可选择跳 $1$ 阶或跳 $2$ 阶;
|
|
|
|
|
|
|
|
|
|
![考虑约束下的递推关系](intro_to_dynamic_programming.assets/climbing_stairs_constraint_state_transfer.png)
|
|
|
|
|
|
|
|
|
|
由此,我们便能推导出以下的状态转移方程:
|
|
|
|
|
在该定义下,$dp[i, j]$ 表示状态 $[i, j]$ 对应的方案数。由此,我们便能推导出以下的状态转移方程:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\begin{cases}
|
|
|
|
|
dp[i][1] = dp[i-1][2] \\
|
|
|
|
|
dp[i][2] = dp[i-2][1] + dp[i-2][2]
|
|
|
|
|
dp[i, 1] = dp[i-1, 2] \\
|
|
|
|
|
dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
|
|
|
|
|
\end{cases}
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
最终,返回 $dp[n][1] + dp[n][2]$ 即可,两者之和代表爬到第 $n$ 阶的方案总数。
|
|
|
|
|
最终,返回 $dp[n, 1] + dp[n, 2]$ 即可,两者之和代表爬到第 $n$ 阶的方案总数。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|