|
|
@ -42,7 +42,14 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title=""
|
|
|
|
```python title=""
|
|
|
|
|
|
|
|
# 在某运行平台下
|
|
|
|
|
|
|
|
def algorithm(n):
|
|
|
|
|
|
|
|
a = 2 # 1 ns
|
|
|
|
|
|
|
|
a = a + 1 # 1 ns
|
|
|
|
|
|
|
|
a = a * 2 # 10 ns
|
|
|
|
|
|
|
|
# 循环 n 次
|
|
|
|
|
|
|
|
for _ in range(n): # 1 ns
|
|
|
|
|
|
|
|
print(0) # 5 ns
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
但实际上, **统计算法的运行时间既不合理也不现实。** 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。
|
|
|
|
但实际上, **统计算法的运行时间既不合理也不现实。** 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。
|
|
|
@ -87,7 +94,17 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title=""
|
|
|
|
```python title=""
|
|
|
|
|
|
|
|
# 算法 A 时间复杂度:常数阶
|
|
|
|
|
|
|
|
def algorithm_A(n):
|
|
|
|
|
|
|
|
print(0)
|
|
|
|
|
|
|
|
# 算法 B 时间复杂度:线性阶
|
|
|
|
|
|
|
|
def algorithm_B(n):
|
|
|
|
|
|
|
|
for _ in range(n):
|
|
|
|
|
|
|
|
print(0)
|
|
|
|
|
|
|
|
# 算法 C 时间复杂度:常数阶
|
|
|
|
|
|
|
|
def algorithm_C(n):
|
|
|
|
|
|
|
|
for _ in range(1000000):
|
|
|
|
|
|
|
|
print(0)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
![time_complexity_first_example](time_complexity.assets/time_complexity_first_example.png)
|
|
|
|
![time_complexity_first_example](time_complexity.assets/time_complexity_first_example.png)
|
|
|
@ -105,9 +122,11 @@ $$
|
|
|
|
## 函数渐进上界
|
|
|
|
## 函数渐进上界
|
|
|
|
|
|
|
|
|
|
|
|
设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为
|
|
|
|
设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
T(n) = 3 + 2n
|
|
|
|
T(n) = 3 + 2n
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
|
|
```java title=""
|
|
|
|
```java title=""
|
|
|
@ -131,14 +150,21 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title=""
|
|
|
|
```python title=""
|
|
|
|
|
|
|
|
def algorithm(n):
|
|
|
|
|
|
|
|
a = 1 # +1
|
|
|
|
|
|
|
|
a = a + 1 # +1
|
|
|
|
|
|
|
|
a = a * 2 # +1
|
|
|
|
|
|
|
|
# 循环 n 次
|
|
|
|
|
|
|
|
for i in range(n): # +1
|
|
|
|
|
|
|
|
print(0) # +1
|
|
|
|
|
|
|
|
}
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
|
|
|
|
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
|
|
|
|
|
|
|
|
|
|
|
|
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐进上界 asymptotic upper bound」。
|
|
|
|
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐进上界 asymptotic upper bound」。
|
|
|
|
|
|
|
|
|
|
|
|
我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐进上界。下面我们先来看看函数渐进上界的数学定义。
|
|
|
|
我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐进上界。下面我们先来看看函数渐进上界的数学定义。
|
|
|
|
|
|
|
|
|
|
|
|
!!! abstract "函数渐进上界"
|
|
|
|
!!! abstract "函数渐进上界"
|
|
|
|
|
|
|
|
|
|
|
@ -174,6 +200,7 @@ $T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得
|
|
|
|
3. **循环嵌套时使用乘法。** 总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 `1.` 和 `2.` 技巧。
|
|
|
|
3. **循环嵌套时使用乘法。** 总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 `1.` 和 `2.` 技巧。
|
|
|
|
|
|
|
|
|
|
|
|
根据以下示例,使用上述技巧前、后的统计结果分别为
|
|
|
|
根据以下示例,使用上述技巧前、后的统计结果分别为
|
|
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
\begin{aligned}
|
|
|
|
\begin{aligned}
|
|
|
|
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline
|
|
|
|
T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline
|
|
|
@ -181,6 +208,7 @@ T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline
|
|
|
|
T(n) & = n^2 + n & \text{偷懒统计 (o.O)}
|
|
|
|
T(n) & = n^2 + n & \text{偷懒统计 (o.O)}
|
|
|
|
\end{aligned}
|
|
|
|
\end{aligned}
|
|
|
|
$$
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
|
|
最终,两者都能推出相同的时间复杂度结果,即 $O(n^2)$ 。
|
|
|
|
最终,两者都能推出相同的时间复杂度结果,即 $O(n^2)$ 。
|
|
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
=== "Java"
|
|
|
@ -211,7 +239,16 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title=""
|
|
|
|
```python title=""
|
|
|
|
|
|
|
|
def algorithm(n):
|
|
|
|
|
|
|
|
a = 1 # +0(技巧 1)
|
|
|
|
|
|
|
|
a = a + n # +0(技巧 1)
|
|
|
|
|
|
|
|
# +n(技巧 2)
|
|
|
|
|
|
|
|
for i in range(5 * n + 1):
|
|
|
|
|
|
|
|
print(0)
|
|
|
|
|
|
|
|
# +n*n(技巧 3)
|
|
|
|
|
|
|
|
for i in range(2 * n):
|
|
|
|
|
|
|
|
for j in range(n + 1):
|
|
|
|
|
|
|
|
print(0)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### 2. 判断渐进上界
|
|
|
|
### 2. 判断渐进上界
|
|
|
@ -279,7 +316,13 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 常数阶 """
|
|
|
|
|
|
|
|
def constant(n):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
size = 100000
|
|
|
|
|
|
|
|
for _ in range(size):
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### 线性阶 $O(n)$
|
|
|
|
### 线性阶 $O(n)$
|
|
|
@ -307,7 +350,12 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 线性阶 """
|
|
|
|
|
|
|
|
def linear(n):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
for _ in range(n):
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
|
|
|
|
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
|
|
|
@ -339,7 +387,13 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 线性阶(遍历数组)"""
|
|
|
|
|
|
|
|
def array_traversal(nums):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
# 循环次数与数组长度成正比
|
|
|
|
|
|
|
|
for num in nums:
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### 平方阶 $O(n^2)$
|
|
|
|
### 平方阶 $O(n^2)$
|
|
|
@ -352,6 +406,7 @@ $$
|
|
|
|
/* 平方阶 */
|
|
|
|
/* 平方阶 */
|
|
|
|
int quadratic(int n) {
|
|
|
|
int quadratic(int n) {
|
|
|
|
int count = 0;
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
// 循环次数与数组长度成平方关系
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
|
for (int j = 0; j < n; j++) {
|
|
|
|
count++;
|
|
|
|
count++;
|
|
|
@ -370,7 +425,14 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 平方阶 """
|
|
|
|
|
|
|
|
def quadratic(n):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
# 循环次数与数组长度成平方关系
|
|
|
|
|
|
|
|
for i in range(n):
|
|
|
|
|
|
|
|
for j in range(n):
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
![time_complexity_constant_linear_quadratic](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
|
|
|
|
![time_complexity_constant_linear_quadratic](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
|
|
|
@ -387,18 +449,22 @@ $$
|
|
|
|
|
|
|
|
|
|
|
|
```java title="" title="time_complexity_types.java"
|
|
|
|
```java title="" title="time_complexity_types.java"
|
|
|
|
/* 平方阶(冒泡排序) */
|
|
|
|
/* 平方阶(冒泡排序) */
|
|
|
|
void bubbleSort(int[] nums) {
|
|
|
|
int bubbleSort(int[] nums) {
|
|
|
|
int n = nums.length;
|
|
|
|
int count = 0; // 计数器
|
|
|
|
for (int i = 0; i < n - 1; i++) {
|
|
|
|
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
|
|
|
for (int j = 0; j < n - 1 - i; j++) {
|
|
|
|
for (int i = nums.length - 1; i > 0; i--) {
|
|
|
|
|
|
|
|
// 内循环:冒泡操作
|
|
|
|
|
|
|
|
for (int j = 0; j < i; j++) {
|
|
|
|
if (nums[j] > nums[j + 1]) {
|
|
|
|
if (nums[j] > nums[j + 1]) {
|
|
|
|
// 交换 nums[j] 和 nums[j + 1]
|
|
|
|
// 交换 nums[j] 与 nums[j + 1]
|
|
|
|
int tmp = nums[j];
|
|
|
|
int tmp = nums[j];
|
|
|
|
nums[j] = nums[j + 1];
|
|
|
|
nums[j] = nums[j + 1];
|
|
|
|
nums[j + 1] = tmp;
|
|
|
|
nums[j + 1] = tmp;
|
|
|
|
|
|
|
|
count += 3; // 元素交换包含 3 个单元操作
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
@ -411,7 +477,20 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 平方阶(冒泡排序)"""
|
|
|
|
|
|
|
|
def bubble_sort(nums):
|
|
|
|
|
|
|
|
count = 0 # 计数器
|
|
|
|
|
|
|
|
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
|
|
|
|
|
|
|
for i in range(len(nums) - 1, 0, -1):
|
|
|
|
|
|
|
|
# 内循环:冒泡操作
|
|
|
|
|
|
|
|
for j in range(i):
|
|
|
|
|
|
|
|
if nums[j] > nums[j + 1]:
|
|
|
|
|
|
|
|
# 交换 nums[j] 与 nums[j + 1]
|
|
|
|
|
|
|
|
tmp = nums[j]
|
|
|
|
|
|
|
|
nums[j] = nums[j + 1]
|
|
|
|
|
|
|
|
nums[j + 1] = tmp
|
|
|
|
|
|
|
|
count += 3 # 元素交换包含 3 个单元操作
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### 指数阶 $O(2^n)$
|
|
|
|
### 指数阶 $O(2^n)$
|
|
|
@ -425,7 +504,7 @@ $$
|
|
|
|
=== "Java"
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
|
|
|
```java title="" title="time_complexity_types.java"
|
|
|
|
```java title="" title="time_complexity_types.java"
|
|
|
|
/* 指数阶(遍历实现) */
|
|
|
|
/* 指数阶(循环实现) */
|
|
|
|
int exponential(int n) {
|
|
|
|
int exponential(int n) {
|
|
|
|
int count = 0, base = 1;
|
|
|
|
int count = 0, base = 1;
|
|
|
|
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
|
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
@ -449,7 +528,16 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 指数阶(循环实现)"""
|
|
|
|
|
|
|
|
def exponential(n):
|
|
|
|
|
|
|
|
count, base = 0, 1
|
|
|
|
|
|
|
|
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
|
|
|
|
|
|
for _ in range(n):
|
|
|
|
|
|
|
|
for _ in range(base):
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
base *= 2
|
|
|
|
|
|
|
|
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
![time_complexity_exponential](time_complexity.assets/time_complexity_exponential.png)
|
|
|
|
![time_complexity_exponential](time_complexity.assets/time_complexity_exponential.png)
|
|
|
@ -477,7 +565,10 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 指数阶(递归实现)"""
|
|
|
|
|
|
|
|
def exp_recur(n):
|
|
|
|
|
|
|
|
if n == 1: return 1
|
|
|
|
|
|
|
|
return exp_recur(n - 1) + exp_recur(n - 1) + 1
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### 对数阶 $O(\log n)$
|
|
|
|
### 对数阶 $O(\log n)$
|
|
|
@ -511,7 +602,13 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 对数阶(循环实现)"""
|
|
|
|
|
|
|
|
def logarithmic(n):
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
while n > 1:
|
|
|
|
|
|
|
|
n = n / 2
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
![time_complexity_logarithmic](time_complexity.assets/time_complexity_logarithmic.png)
|
|
|
|
![time_complexity_logarithmic](time_complexity.assets/time_complexity_logarithmic.png)
|
|
|
@ -539,7 +636,10 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 对数阶(递归实现)"""
|
|
|
|
|
|
|
|
def log_recur(n):
|
|
|
|
|
|
|
|
if n <= 1: return 0
|
|
|
|
|
|
|
|
return log_recur(n / 2) + 1
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
### 线性对数阶 $O(n \log n)$
|
|
|
|
### 线性对数阶 $O(n \log n)$
|
|
|
@ -572,7 +672,14 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 线性对数阶 """
|
|
|
|
|
|
|
|
def linear_log_recur(n):
|
|
|
|
|
|
|
|
if n <= 1: return 1
|
|
|
|
|
|
|
|
count = linear_log_recur(n // 2) + \
|
|
|
|
|
|
|
|
linear_log_recur(n // 2)
|
|
|
|
|
|
|
|
for _ in range(n):
|
|
|
|
|
|
|
|
count += 1
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
![time_complexity_logarithmic_linear](time_complexity.assets/time_complexity_logarithmic_linear.png)
|
|
|
|
![time_complexity_logarithmic_linear](time_complexity.assets/time_complexity_logarithmic_linear.png)
|
|
|
@ -613,7 +720,14 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
```python title="time_complexity_types.py"
|
|
|
|
|
|
|
|
""" 阶乘阶(递归实现)"""
|
|
|
|
|
|
|
|
def factorial_recur(n):
|
|
|
|
|
|
|
|
if n == 0: return 1
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
|
|
|
|
# 从 1 个分裂出 n 个
|
|
|
|
|
|
|
|
for _ in range(n):
|
|
|
|
|
|
|
|
count += factorial_recur(n - 1)
|
|
|
|
|
|
|
|
return count
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
![time_complexity_factorial](time_complexity.assets/time_complexity_factorial.png)
|
|
|
|
![time_complexity_factorial](time_complexity.assets/time_complexity_factorial.png)
|
|
|
@ -681,7 +795,29 @@ $$
|
|
|
|
=== "Python"
|
|
|
|
=== "Python"
|
|
|
|
|
|
|
|
|
|
|
|
```python title="worst_best_time_complexity.py"
|
|
|
|
```python title="worst_best_time_complexity.py"
|
|
|
|
|
|
|
|
""" 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """
|
|
|
|
|
|
|
|
def random_numbers(n):
|
|
|
|
|
|
|
|
# 生成数组 nums =: 1, 2, 3, ..., n
|
|
|
|
|
|
|
|
nums = [i for i in range(1, n + 1)]
|
|
|
|
|
|
|
|
# 随机打乱数组元素
|
|
|
|
|
|
|
|
random.shuffle(nums)
|
|
|
|
|
|
|
|
return nums
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" 查找数组 nums 中数字 1 所在索引 """
|
|
|
|
|
|
|
|
def find_one(nums):
|
|
|
|
|
|
|
|
for i in range(len(nums)):
|
|
|
|
|
|
|
|
if nums[i] == 1:
|
|
|
|
|
|
|
|
return i
|
|
|
|
|
|
|
|
return -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Driver Code """
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
for i in range(10):
|
|
|
|
|
|
|
|
n = 100
|
|
|
|
|
|
|
|
nums = random_numbers(n)
|
|
|
|
|
|
|
|
index = find_one(nums)
|
|
|
|
|
|
|
|
print("\n数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
|
|
|
|
|
|
|
|
print("数字 1 的索引为", index)
|
|
|
|
```
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
!!! tip
|
|
|
|