diff --git a/codes/javascript/chapter_computational_complexity/time_complexity.js b/codes/javascript/chapter_computational_complexity/time_complexity.js index 9fafb9656..b1a9eb7c5 100644 --- a/codes/javascript/chapter_computational_complexity/time_complexity.js +++ b/codes/javascript/chapter_computational_complexity/time_complexity.js @@ -4,156 +4,150 @@ * Author: RiverTwilight (contact@rene.wang) */ -class time_complexity { - /* 常数阶 */ - constant(n) { - var count = 0; - const size = 100000; - for (var i = 0; i < size; i++) count++; - return count; - } +/* 常数阶 */ +function constant(n) { + var count = 0; + const size = 100000; + for (var i = 0; i < size; i++) count++; + return count; +} - /* 线性阶 */ - linear(n) { - var count = 0; - for (var i = 0; i < n; i++) count++; - return count; - } +/* 线性阶 */ +function linear(n) { + var count = 0; + for (var i = 0; i < n; i++) count++; + return count; +} - /* 线性阶(遍历数组) */ - arrayTraversal(nums) { - var count = 0; - // 循环次数与数组长度成正比 - for (var i = 0; i < nums.length; i++) { - count++; - } - return count; +/* 线性阶(遍历数组) */ +function arrayTraversal(nums) { + var count = 0; + // 循环次数与数组长度成正比 + for (var i = 0; i < nums.length; i++) { + count++; } + return count; +} - /* 平方阶 */ - quadratic(n) { - var count = 0; - // 循环次数与数组长度成平方关系 - for (var i = 0; i < n; i++) { - for (let j = 0; j < n; j++) { - count++; - } +/* 平方阶 */ +function quadratic(n) { + var count = 0; + // 循环次数与数组长度成平方关系 + for (var i = 0; i < n; i++) { + for (let j = 0; j < n; j++) { + count++; } - return count; } + return count; +} - /* 平方阶(冒泡排序) */ - bubbleSort(nums) { - var count = 0; // 计数器 - // 外循环:待排序元素数量为 n-1, n-2, ..., 1 - for (var i = nums.length - 1; i > 0; i--) { - // 内循环:冒泡操作 - for (let j = 0; j < i; j++) { - if (nums[j] > nums[j + 1]) { - // 交换 nums[j] 与 nums[j + 1] - let tmp = nums[j]; - nums[j] = nums[j + 1]; - nums[j + 1] = tmp; - count += 3; // 元素交换包含 3 个单元操作 - } +/* 平方阶(冒泡排序) */ +function bubbleSort(nums) { + var count = 0; // 计数器 + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (var i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + count += 3; // 元素交换包含 3 个单元操作 } } - return count; } + return count; +} - /* 指数阶(循环实现) */ - exponential(n) { - var count = 0, - base = 1; - // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) - for (var i = 0; i < n; i++) { - for (let j = 0; j < base; j++) { - count++; - } - base *= 2; +/* 指数阶(循环实现) */ +function exponential(n) { + var count = 0, + base = 1; + // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) + for (var i = 0; i < n; i++) { + for (let j = 0; j < base; j++) { + count++; } - // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 - return count; + base *= 2; } + // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 + return count; +} - /* 指数阶(递归实现) */ - expRecur(n) { - if (n == 1) return 1; - return this.expRecur(n - 1) + this.expRecur(n - 1) + 1; - } +/* 指数阶(递归实现) */ +function expRecur(n) { + if (n == 1) return 1; + return expRecur(n - 1) + expRecur(n - 1) + 1; +} - /* 对数阶(循环实现) */ - logarithmic(n) { - var count = 0; - while (n > 1) { - n = n / 2; - count++; - } - return count; +/* 对数阶(循环实现) */ +function logarithmic(n) { + var count = 0; + while (n > 1) { + n = n / 2; + count++; } + return count; +} - /* 对数阶(递归实现) */ - logRecur(n) { - if (n <= 1) return 0; - return this.logRecur(n / 2) + 1; - } +/* 对数阶(递归实现) */ +function logRecur(n) { + if (n <= 1) return 0; + return logRecur(n / 2) + 1; +} - /* 线性对数阶 */ - linearLogRecur(n) { - if (n <= 1) return 1; - var count = this.linearLogRecur(n / 2) + this.linearLogRecur(n / 2); - for (var i = 0; i < n; i++) { - count++; - } - return count; +/* 线性对数阶 */ +function linearLogRecur(n) { + if (n <= 1) return 1; + var count = linearLogRecur(n / 2) + linearLogRecur(n / 2); + for (var i = 0; i < n; i++) { + count++; } + return count; +} - /* 阶乘阶(递归实现) */ - factorialRecur(n) { - if (n == 0) return 1; - var count = 0; - // 从 1 个分裂出 n 个 - for (var i = 0; i < n; i++) { - count += this.factorialRecur(n - 1); - } - return count; +/* 阶乘阶(递归实现) */ +function factorialRecur(n) { + if (n == 0) return 1; + var count = 0; + // 从 1 个分裂出 n 个 + for (var i = 0; i < n; i++) { + count += factorialRecur(n - 1); } + return count; } -(function main() { - var test = new time_complexity(); - - var n = 8; - console.log("输入数据大小 n = " + n); +var n = 8; +console.log("输入数据大小 n = " + n); - var count = test.constant(n); - console.log("常数阶的计算操作数量 = " + count); +var count = constant(n); +console.log("常数阶的计算操作数量 = " + count); - count = test.linear(n); - console.log("线性阶的计算操作数量 = " + count); - count = test.arrayTraversal(new Array(n)); - console.log("线性阶(遍历数组)的计算操作数量 = " + count); +count = linear(n); +console.log("线性阶的计算操作数量 = " + count); +count = arrayTraversal(new Array(n)); +console.log("线性阶(遍历数组)的计算操作数量 = " + count); - count = test.quadratic(n); - console.log("平方阶的计算操作数量 = " + count); - var nums = new Array(n); - for (var i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] - count = test.bubbleSort(nums); - console.log("平方阶(冒泡排序)的计算操作数量 = " + count); +count = quadratic(n); +console.log("平方阶的计算操作数量 = " + count); +var nums = new Array(n); +for (var i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] +count = bubbleSort(nums); +console.log("平方阶(冒泡排序)的计算操作数量 = " + count); - count = test.exponential(n); - console.log("指数阶(循环实现)的计算操作数量 = " + count); - count = test.expRecur(n); - console.log("指数阶(递归实现)的计算操作数量 = " + count); +count = exponential(n); +console.log("指数阶(循环实现)的计算操作数量 = " + count); +count = expRecur(n); +console.log("指数阶(递归实现)的计算操作数量 = " + count); - count = test.logarithmic(n); - console.log("对数阶(循环实现)的计算操作数量 = " + count); - count = test.logRecur(n); - console.log("对数阶(递归实现)的计算操作数量 = " + count); +count = logarithmic(n); +console.log("对数阶(循环实现)的计算操作数量 = " + count); +count = logRecur(n); +console.log("对数阶(递归实现)的计算操作数量 = " + count); - count = test.linearLogRecur(n); - console.log("线性对数阶(递归实现)的计算操作数量 = " + count); +count = linearLogRecur(n); +console.log("线性对数阶(递归实现)的计算操作数量 = " + count); - count = test.factorialRecur(n); - console.log("阶乘阶(递归实现)的计算操作数量 = " + count); -})(); +count = factorialRecur(n); +console.log("阶乘阶(递归实现)的计算操作数量 = " + count);