|
|
|
@ -2,11 +2,11 @@
|
|
|
|
|
|
|
|
|
|
## 统计算法运行时间
|
|
|
|
|
|
|
|
|
|
运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 **准确预估一段代码的运行时间** ,该如何做呢?
|
|
|
|
|
运行时间可以直观且准确地反映算法的效率。然而,如果我们想要准确预估一段代码的运行时间,应该如何操作呢?
|
|
|
|
|
|
|
|
|
|
1. 首先需要 **确定运行平台** ,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。
|
|
|
|
|
2. 评估 **各种计算操作的所需运行时间** ,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作需要 5 ns 等。
|
|
|
|
|
3. 根据代码 **统计所有计算操作的数量** ,并将所有操作的执行时间求和,即可得到运行时间。
|
|
|
|
|
1. **确定运行平台**,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
|
|
|
|
|
2. **评估各种计算操作所需的运行时间**,例如加法操作 `+` 需要 1 ns,乘法操作 `*` 需要 10 ns,打印操作需要 5 ns 等。
|
|
|
|
|
3. **统计代码中所有的计算操作**,并将所有操作的执行时间求和,从而得到运行时间。
|
|
|
|
|
|
|
|
|
|
例如以下代码,输入数据大小为 $n$ ,根据以上方法,可以得到算法运行时间为 $6n + 12$ ns 。
|
|
|
|
|
|
|
|
|
@ -155,16 +155,16 @@ $$
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
但实际上, **统计算法的运行时间既不合理也不现实**。首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。
|
|
|
|
|
然而实际上,**统计算法的运行时间既不合理也不现实**。首先,我们不希望预估时间和运行平台绑定,因为算法需要在各种不同的平台上运行。其次,我们很难获知每种操作的运行时间,这给预估过程带来了极大的难度。
|
|
|
|
|
|
|
|
|
|
## 统计时间增长趋势
|
|
|
|
|
|
|
|
|
|
「时间复杂度分析」采取了不同的做法,其统计的不是算法运行时间,而是 **算法运行时间随着数据量变大时的增长趋势** 。
|
|
|
|
|
「时间复杂度分析」采取了一种不同的方法,其统计的不是算法运行时间,**而是算法运行时间随着数据量变大时的增长趋势**。
|
|
|
|
|
|
|
|
|
|
“时间增长趋势”这个概念比较抽象,我们借助一个例子来理解。设输入数据大小为 $n$ ,给定三个算法 `A` , `B` , `C` 。
|
|
|
|
|
“时间增长趋势”这个概念较为抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$,给定三个算法 `A`,`B`,`C` 。
|
|
|
|
|
|
|
|
|
|
- 算法 `A` 只有 $1$ 个打印操作,算法运行时间不随着 $n$ 增大而增长。我们称此算法的时间复杂度为「常数阶」。
|
|
|
|
|
- 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大成线性增长。此算法的时间复杂度被称为「线性阶」。
|
|
|
|
|
- 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大呈线性增长。此算法的时间复杂度被称为「线性阶」。
|
|
|
|
|
- 算法 `C` 中的打印操作需要循环 $1000000$ 次,但运行时间仍与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为「常数阶」。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
@ -367,17 +367,17 @@ $$
|
|
|
|
|
|
|
|
|
|
![算法 A, B, C 的时间增长趋势](time_complexity.assets/time_complexity_simple_example.png)
|
|
|
|
|
|
|
|
|
|
相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足?
|
|
|
|
|
相较于直接统计算法运行时间,时间复杂度分析有哪些优势和局限性呢?
|
|
|
|
|
|
|
|
|
|
**时间复杂度可以有效评估算法效率**。算法 `B` 运行时间的增长是线性的,在 $n > 1$ 时慢于算法 `A` ,在 $n > 1000000$ 时慢于算法 `C` 。实质上,只要输入数据大小 $n$ 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这也正是时间增长趋势的含义。
|
|
|
|
|
**时间复杂度能够有效评估算法效率**。例如,算法 `B` 的运行时间呈线性增长,在 $n > 1$ 时比算法 `A` 慢,在 $n > 1000000$ 时比算法 `C` 慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这正是时间增长趋势所表达的含义。
|
|
|
|
|
|
|
|
|
|
**时间复杂度的推算方法更加简便**。在时间复杂度分析中,我们可以将统计「计算操作的运行时间」简化为统计「计算操作的数量」,这是因为,无论是运行平台还是计算操作类型,都与算法运行时间的增长趋势无关。因而,我们可以简单地将所有计算操作的执行时间统一看作是相同的“单位时间”,这样的简化做法大大降低了估算难度。
|
|
|
|
|
**时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样的简化方法大大降低了估算难度。
|
|
|
|
|
|
|
|
|
|
**时间复杂度也存在一定的局限性**。比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。对于以上情况,我们很难仅凭时间复杂度来判定算法效率高低。然而,即使存在这些问题,复杂度分析仍然是评判算法效率的最有效且常用的方法。
|
|
|
|
|
**时间复杂度也存在一定的局限性**。例如,尽管算法 `A` 和 `C` 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 `B` 的时间复杂度比 `C` 高,但在输入数据大小 $n$ 较小时,算法 `B` 明显优于算法 `C` 。在这些情况下,我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。
|
|
|
|
|
|
|
|
|
|
## 函数渐近上界
|
|
|
|
|
|
|
|
|
|
设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为
|
|
|
|
|
设算法的计算操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以下算法的操作数量为
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
T(n) = 3 + 2n
|
|
|
|
@ -515,11 +515,11 @@ $$
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
|
|
|
|
|
$T(n)$ 是一次函数,说明时间增长趋势是线性的,因此可以得出时间复杂度是线性阶。
|
|
|
|
|
|
|
|
|
|
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。
|
|
|
|
|
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为「大 $O$ 记号 Big-$O$ Notation」,表示函数 $T(n)$ 的「渐近上界 Asymptotic Upper Bound」。
|
|
|
|
|
|
|
|
|
|
我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐近上界。下面我们先来看看函数渐近上界的数学定义。
|
|
|
|
|
推算时间复杂度本质上是计算“操作数量函数 $T(n)$”的渐近上界。接下来,我们来看函数渐近上界的数学定义。
|
|
|
|
|
|
|
|
|
|
!!! abstract "函数渐近上界"
|
|
|
|
|
|
|
|
|
@ -534,22 +534,20 @@ $T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得
|
|
|
|
|
|
|
|
|
|
![函数的渐近上界](time_complexity.assets/asymptotic_upper_bound.png)
|
|
|
|
|
|
|
|
|
|
本质上看,计算渐近上界就是在找一个函数 $f(n)$ ,**使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
|
|
|
|
渐近上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。
|
|
|
|
|
从本质上讲,计算渐近上界就是寻找一个函数 $f(n)$ ,使得当 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别,仅相差一个常数项 $c$ 的倍数。
|
|
|
|
|
|
|
|
|
|
## 推算方法
|
|
|
|
|
|
|
|
|
|
推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐近上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐近上界」。
|
|
|
|
|
渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无需担心。因为在实际使用中,我们只需要掌握推算方法,数学意义可以逐渐领悟。
|
|
|
|
|
|
|
|
|
|
根据定义,确定 $f(n)$ 之后,我们便可得到时间复杂度 $O(f(n))$ 。那么如何确定渐近上界 $f(n)$ 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。
|
|
|
|
|
|
|
|
|
|
### 1) 统计操作数量
|
|
|
|
|
|
|
|
|
|
对着代码,从上到下一行一行地计数即可。然而,**由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数偷懒技巧:
|
|
|
|
|
针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数简化技巧:
|
|
|
|
|
|
|
|
|
|
1. **跳过数量与 $n$ 无关的操作**。因为他们都是 $T(n)$ 中的常数项,对时间复杂度不产生影响。
|
|
|
|
|
2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次、……,都可以化简记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度也不产生影响。
|
|
|
|
|
1. **忽略与 $n$ 无关的操作**。因为它们都是 $T(n)$ 中的常数项,对时间复杂度不产生影响。
|
|
|
|
|
2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次等,都可以简化记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度没有影响。
|
|
|
|
|
3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 `1.` 和 `2.` 技巧。
|
|
|
|
|
|
|
|
|
|
以下示例展示了使用上述技巧前、后的统计结果。
|
|
|
|
@ -743,9 +741,9 @@ $$
|
|
|
|
|
|
|
|
|
|
### 2) 判断渐近上界
|
|
|
|
|
|
|
|
|
|
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。
|
|
|
|
|
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将发挥主导作用,其它项的影响都可以被忽略。
|
|
|
|
|
|
|
|
|
|
以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 **系数无法撼动阶数** 这一结论。在 $n$ 趋于无穷大时,这些常数都是“浮云”。
|
|
|
|
|
以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 $n$ 趋于无穷大时,这些常数变得无足轻重。
|
|
|
|
|
|
|
|
|
|
<div class="center-table" markdown>
|
|
|
|
|
|
|
|
|
@ -761,7 +759,7 @@ $$
|
|
|
|
|
|
|
|
|
|
## 常见类型
|
|
|
|
|
|
|
|
|
|
设输入数据大小为 $n$ ,常见的时间复杂度类型有(从低到高排列)
|
|
|
|
|
设输入数据大小为 $n$ ,常见的时间复杂度类型包括(按照从低到高的顺序排列):
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\begin{aligned}
|
|
|
|
@ -774,13 +772,13 @@ $$
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
|
|
|
|
部分示例代码需要一些前置知识,包括数组、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解时间复杂度含义和推算方法上。
|
|
|
|
|
部分示例代码需要一些预备知识,包括数组、递归算法等。如果遇到不理解的部分,请不要担心,可以在学习完后面章节后再回顾。现阶段,请先专注于理解时间复杂度的含义和推算方法。
|
|
|
|
|
|
|
|
|
|
### 常数阶 $O(1)$
|
|
|
|
|
|
|
|
|
|
常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。
|
|
|
|
|
|
|
|
|
|
对于以下算法,无论操作数量 `size` 有多大,只要与数据大小 $n$ 无关,时间复杂度就仍为 $O(1)$ 。
|
|
|
|
|
对于以下算法,尽管操作数量 `size` 可能很大,但由于其与数据大小 $n$ 无关,因此时间复杂度仍为 $O(1)$ 。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -844,7 +842,7 @@ $$
|
|
|
|
|
|
|
|
|
|
### 线性阶 $O(n)$
|
|
|
|
|
|
|
|
|
|
线性阶的操作数量相对输入数据大小成线性级别增长。线性阶常出现于单层循环。
|
|
|
|
|
线性阶的操作数量相对于输入数据大小以线性级别增长。线性阶通常出现在单层循环中。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -906,11 +904,11 @@ $$
|
|
|
|
|
[class]{}-[func]{linear}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
|
|
|
|
|
遍历数组和遍历链表等操作的时间复杂度均为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
!!! question "如何确定输入数据大小 $n$ ?"
|
|
|
|
|
|
|
|
|
|
**数据大小 $n$ 是根据输入数据的类型来确定的**。比如,在上述示例中,我们直接将 $n$ 看作输入数据大小;以下遍历数组示例中,数据大小 $n$ 为数组的长度。
|
|
|
|
|
**数据大小 $n$ 需根据输入数据的类型来具体确定**。例如,在上述示例中,我们直接将 $n$ 视为输入数据大小;在下面遍历数组的示例中,数据大小 $n$ 为数组的长度。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -974,7 +972,7 @@ $$
|
|
|
|
|
|
|
|
|
|
### 平方阶 $O(n^2)$
|
|
|
|
|
|
|
|
|
|
平方阶的操作数量相对输入数据大小成平方级别增长。平方阶常出现于嵌套循环,外层循环和内层循环都为 $O(n)$ ,总体为 $O(n^2)$ 。
|
|
|
|
|
平方阶的操作数量相对于输入数据大小以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环都为 $O(n)$ ,因此总体为 $O(n^2)$ 。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -1038,7 +1036,7 @@ $$
|
|
|
|
|
|
|
|
|
|
![常数阶、线性阶、平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
|
|
|
|
|
|
|
|
|
|
以「冒泡排序」为例,外层循环 $n - 1$ 次,内层循环 $n-1, n-2, \cdots, 2, 1$ 次,平均为 $\frac{n}{2}$ 次,因此时间复杂度为 $O(n^2)$ 。
|
|
|
|
|
以「冒泡排序」为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1, n-2, \cdots, 2, 1$ 次,平均为 $\frac{n}{2}$ 次,因此时间复杂度为 $O(n^2)$ 。
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
O((n - 1) \frac{n}{2}) = O(n^2)
|
|
|
|
@ -1108,9 +1106,9 @@ $$
|
|
|
|
|
|
|
|
|
|
!!! note
|
|
|
|
|
|
|
|
|
|
生物学科中的“细胞分裂”即是指数阶增长:初始状态为 $1$ 个细胞,分裂一轮后为 $2$ 个,分裂两轮后为 $4$ 个,……,分裂 $n$ 轮后有 $2^n$ 个细胞。
|
|
|
|
|
生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 $1$ 个细胞,分裂一轮后变为 $2$ 个,分裂两轮后变为 $4$ 个,以此类推,分裂 $n$ 轮后有 $2^n$ 个细胞。
|
|
|
|
|
|
|
|
|
|
指数阶增长得非常快,在实际应用中一般是不能被接受的。若一个问题使用「暴力枚举」求解的时间复杂度是 $O(2^n)$ ,那么一般都需要使用「动态规划」或「贪心算法」等算法来求解。
|
|
|
|
|
指数阶增长非常迅速,在实际应用中通常是不可接受的。若一个问题使用「暴力枚举」求解的时间复杂度为 $O(2^n)$ ,那么通常需要使用「动态规划」或「贪心算法」等方法来解决。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -1174,7 +1172,7 @@ $$
|
|
|
|
|
|
|
|
|
|
![指数阶的时间复杂度](time_complexity.assets/time_complexity_exponential.png)
|
|
|
|
|
|
|
|
|
|
在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,分裂 $n$ 次后停止。
|
|
|
|
|
在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,经过 $n$ 次分裂后停止。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -1238,9 +1236,9 @@ $$
|
|
|
|
|
|
|
|
|
|
### 对数阶 $O(\log n)$
|
|
|
|
|
|
|
|
|
|
对数阶与指数阶正好相反,后者反映“每轮增加到两倍的情况”,而前者反映“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长得很慢,是理想的时间复杂度。
|
|
|
|
|
与指数阶相反,对数阶反映了“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长缓慢,是理想的时间复杂度。
|
|
|
|
|
|
|
|
|
|
对数阶常出现于「二分查找」和「分治算法」中,体现“一分为多”、“化繁为简”的算法思想。
|
|
|
|
|
对数阶常出现于「二分查找」和「分治算法」中,体现了“一分为多”和“化繁为简”的算法思想。
|
|
|
|
|
|
|
|
|
|
设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。
|
|
|
|
|
|
|
|
|
@ -1372,7 +1370,7 @@ $$
|
|
|
|
|
|
|
|
|
|
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。
|
|
|
|
|
|
|
|
|
|
主流排序算法的时间复杂度都是 $O(n \log n )$ ,例如快速排序、归并排序、堆排序等。
|
|
|
|
|
主流排序算法的时间复杂度通常为 $O(n \log n)$ ,例如快速排序、归并排序、堆排序等。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -1438,13 +1436,13 @@ $$
|
|
|
|
|
|
|
|
|
|
### 阶乘阶 $O(n!)$
|
|
|
|
|
|
|
|
|
|
阶乘阶对应数学上的「全排列」。即给定 $n$ 个互不重复的元素,求其所有可能的排列方案,则方案数量为
|
|
|
|
|
阶乘阶对应数学上的「全排列」问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为:
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
阶乘常使用递归实现。例如以下代码,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,…… ,直至到第 $n$ 层时终止分裂。
|
|
|
|
|
阶乘通常使用递归实现。例如以下代码,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,以此类推,直至第 $n$ 层时终止分裂。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -1510,12 +1508,12 @@ $$
|
|
|
|
|
|
|
|
|
|
## 最差、最佳、平均时间复杂度
|
|
|
|
|
|
|
|
|
|
**某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关**。举一个例子,输入一个长度为 $n$ 数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 $1$ 的索引。我们可以得出以下结论:
|
|
|
|
|
**某些算法的时间复杂度不是固定的,而是与输入数据的分布有关**。例如,假设输入一个长度为 $n$ 的数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 $1$ 的索引。我们可以得出以下结论:
|
|
|
|
|
|
|
|
|
|
- 当 `nums = [?, ?, ..., 1]`,即当末尾元素是 $1$ 时,则需完整遍历数组,此时达到 **最差时间复杂度 $O(n)$** ;
|
|
|
|
|
- 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$** ;
|
|
|
|
|
- 当 `nums = [?, ?, ..., 1]` ,即当末尾元素是 $1$ 时,需要完整遍历数组,此时达到 **最差时间复杂度 $O(n)$**;
|
|
|
|
|
- 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$**;
|
|
|
|
|
|
|
|
|
|
「函数渐近上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐近下界」用 $\Omega$ 记号(Omega Notation)来表示,代表「最佳时间复杂度」。
|
|
|
|
|
“函数渐近上界”使用大 $O$ 记号表示,代表「最差时间复杂度」。相应地,“函数渐近下界”用 $\Omega$ 记号来表示,代表「最佳时间复杂度」。
|
|
|
|
|
|
|
|
|
|
=== "Java"
|
|
|
|
|
|
|
|
|
@ -1618,14 +1616,14 @@ $$
|
|
|
|
|
|
|
|
|
|
!!! tip
|
|
|
|
|
|
|
|
|
|
我们在实际应用中很少使用「最佳时间复杂度」,因为往往只有很小概率下才能达到,会带来一定的误导性。反之,「最差时间复杂度」最为实用,因为它给出了一个“效率安全值”,让我们可以放心地使用算法。
|
|
|
|
|
实际应用中我们很少使用「最佳时间复杂度」,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。相反,「最差时间复杂度」更为实用,因为它给出了一个“效率安全值”,让我们可以放心地使用算法。
|
|
|
|
|
|
|
|
|
|
从上述示例可以看出,最差或最佳时间复杂度只出现在“特殊分布的数据”中,这些情况的出现概率往往很小,因此并不能最真实地反映算法运行效率。**相对地,「平均时间复杂度」可以体现算法在随机输入数据下的运行效率,用 $\Theta$ 记号(Theta Notation)来表示**。
|
|
|
|
|
从上述示例可以看出,最差或最佳时间复杂度只出现在“特殊分布的数据”中,这些情况的出现概率可能很小,因此并不能最真实地反映算法运行效率。相较之下,**「平均时间复杂度」可以体现算法在随机输入数据下的运行效率**,用 $\Theta$ 记号来表示。
|
|
|
|
|
|
|
|
|
|
对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 $\frac{n}{2}$ ,平均时间复杂度为 $\Theta(\frac{n}{2}) = \Theta(n)$ 。
|
|
|
|
|
|
|
|
|
|
但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。这种情况下,我们一般使用最差时间复杂度来作为算法效率的评判标准。
|
|
|
|
|
但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。
|
|
|
|
|
|
|
|
|
|
!!! question "为什么很少看到 $\Theta$ 符号?"
|
|
|
|
|
|
|
|
|
|
实际中我们经常使用「大 $O$ 符号」来表示「平均复杂度」,这样严格意义上来说是不规范的。这可能是因为 $O$ 符号实在是太朗朗上口了。</br>如果在本书和其他资料中看到类似 **平均时间复杂度 $O(n)$** 的表述,请你直接理解为 $\Theta(n)$ 即可。
|
|
|
|
|
可能由于 $O$ 符号过于朗朗上口,我们常常使用它来表示「平均复杂度」,但从严格意义上看,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。
|
|
|
|
|