diff --git a/codes/python/chapter_divide_and_conquer/binary_search_recur.py b/codes/python/chapter_divide_and_conquer/binary_search_recur.py new file mode 100644 index 000000000..26a8884b2 --- /dev/null +++ b/codes/python/chapter_divide_and_conquer/binary_search_recur.py @@ -0,0 +1,39 @@ +""" +File: binary_search_recur.py +Created Time: 2023-07-17 +Author: krahets (xisunyy@163.com) +""" + + +def dfs(nums: list[int], target: int, i: int, j: int) -> int: + """二分查找:分治""" + # 若区间为空,代表未找到目标元素,则返回 -1 + if i > j: + return -1 + # 计算中点索引 m + m = (i + j) // 2 + if nums[m] < target: + # 此情况说明 target 在区间 [m+1, j] 中,递归解决该子问题 + return dfs(nums, target, m + 1, j) + elif nums[m] > target: + # 此情况说明 target 在区间 [i, m-1] 中,递归解决该子问题 + return dfs(nums, target, i, m - 1) + else: + # 找到目标元素,返回其索引 + return m + + +def binary_search(nums: list[int], target: int) -> int: + """二分查找""" + n = len(nums) + return dfs(nums, target, 0, n - 1) + + +"""Driver Code""" +if __name__ == "__main__": + target = 6 + nums = [1, 3, 6, 8, 12, 15, 23, 26, 31, 35] + + # 二分查找(双闭区间) + index: int = binary_search(nums, target) + print("目标元素 6 的索引 = ", index) diff --git a/docs/chapter_divide_and_conquer/binary_search_recur.assets/binary_search_recur.png b/docs/chapter_divide_and_conquer/binary_search_recur.assets/binary_search_recur.png new file mode 100644 index 000000000..b9f5e59b2 Binary files /dev/null and b/docs/chapter_divide_and_conquer/binary_search_recur.assets/binary_search_recur.png differ diff --git a/docs/chapter_divide_and_conquer/binary_search_recur.md b/docs/chapter_divide_and_conquer/binary_search_recur.md new file mode 100644 index 000000000..356e8b7cd --- /dev/null +++ b/docs/chapter_divide_and_conquer/binary_search_recur.md @@ -0,0 +1,118 @@ +# 分治搜索策略 + +我们已经学过,搜索算法分为两大类:暴力搜索、自适应搜索。暴力搜索的时间复杂度为 $O(n)$ 。自适应搜索利用特有的数据组织形式或先验信息,可达到 $O(\log n)$ 甚至 $O(1)$ 的时间复杂度。 + +实际上,**$O(\log n)$ 的搜索算法通常都是基于分治策略实现的**,例如: + +- 二分查找的每一步都将问题(在数组中搜索目标元素)分解为一个小问题(在数组的一半中搜索目标元素),这个过程一直持续到数组为空或找到目标元素为止。 +- 树是分治关系的代表,在二叉搜索树、AVL 树、堆等数据结构中,各种操作的时间复杂度皆为 $O(\log n)$ 。 + +分治之所以能够提升搜索效率,是因为暴力搜索每轮只能排除一个选项,**而基于分治的搜索每轮可以排除一半选项**。 + +## 基于分治实现二分 + +接下来,我们尝试从分治策略的角度分析二分查找的性质: + +- **问题可以被分解**:二分查找递归地将原问题(在数组中进行查找)分解为子问题(在数组的一半中进行查找),这是通过比较中间元素和目标元素来实现的。 +- **子问题是独立的**:在二分查找中,每轮只处理一个子问题,它不受另外子问题的影响。 +- **子问题的解无需合并**:二分查找旨在查找一个特定元素,因此不需要将子问题的解进行合并。当子问题得到解决时,原问题也会同时得到解决。 + +在之前章节中,我们基于递推(迭代)实现二分查找。现在,我们尝试基于递归分治来实现它。 + +问题定义为:**在数组 `nums` 的区间 $[i, j]$ 内查找元素 `target`** ,记为 $f(i, j)$ 。 + +设数组长度为 $n$ ,则二分查找的流程为:从原问题 $f(0, n-1)$ 开始,每轮排除一半索引区间,递归求解规模减小一半的子问题,直至找到 `target` 或区间为空时返回。 + +下图展示了在数组中二分查找目标元素 $6$ 的分治过程。 + +![二分查找的分治过程](binary_search_recur.assets/binary_search_recur.png) + +如下代码所示,我们声明一个递归函数 `dfs()` 来求解问题 $f(i, j)$ 。 + +=== "Java" + + ```java title="binary_search_recur.java" + [class]{binary_search_recur}-[func]{dfs} + + [class]{binary_search_recur}-[func]{binarySearch} + ``` + +=== "C++" + + ```cpp title="binary_search_recur.cpp" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "Python" + + ```python title="binary_search_recur.py" + [class]{}-[func]{dfs} + + [class]{}-[func]{binary_search} + ``` + +=== "Go" + + ```go title="binary_search_recur.go" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "JavaScript" + + ```javascript title="binary_search_recur.js" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "TypeScript" + + ```typescript title="binary_search_recur.ts" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "C" + + ```c title="binary_search_recur.c" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "C#" + + ```csharp title="binary_search_recur.cs" + [class]{binary_search_recur}-[func]{dfs} + + [class]{binary_search_recur}-[func]{binarySearch} + ``` + +=== "Swift" + + ```swift title="binary_search_recur.swift" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "Zig" + + ```zig title="binary_search_recur.zig" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` + +=== "Dart" + + ```dart title="binary_search_recur.dart" + [class]{}-[func]{dfs} + + [class]{}-[func]{binarySearch} + ``` diff --git a/mkdocs.yml b/mkdocs.yml index 5b0c6f0c8..be6abb62e 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -208,8 +208,9 @@ nav: - 12.     分治: - chapter_divide_and_conquer/index.md - 12.1.   分治算法(New): chapter_divide_and_conquer/divide_and_conquer.md - - 12.2.   构建树问题(New): chapter_divide_and_conquer/build_binary_tree_problem.md - - 12.3.   汉诺塔问题(New): chapter_divide_and_conquer/hanota_problem.md + - 12.2.   分治搜索策略(New): chapter_divide_and_conquer/binary_search_recur.md + - 12.3.   构建树问题(New): chapter_divide_and_conquer/build_binary_tree_problem.md + - 12.4.   汉诺塔问题(New): chapter_divide_and_conquer/hanota_problem.md - 13.     回溯: - chapter_backtracking/index.md - 13.1.   回溯算法: chapter_backtracking/backtracking_algorithm.md