feat: Add Ruby code - chapter "computational complexity" (#1212)

* feat: add ruby code - chapter computational complexity

* feat: add ruby code blocks
pull/1207/head^2
khoaxuantu 8 months ago committed by GitHub
parent df83b869eb
commit fd580a184a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,78 @@
=begin
File: iteration.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### for 循环 ###
def for_loop(n)
res = 0
# 循环求和 1, 2, ..., n-1, n
for i in 1..n
res += i
end
res
end
### while 循环 ###
def while_loop(n)
res = 0
i = 1 # 初始化条件变量
# 循环求和 1, 2, ..., n-1, n
while i <= n
res += i
i += 1 # 更新条件变量
end
res
end
### while 循环(两次更新)###
def while_loop_ii(n)
res = 0
i = 1 # 初始化条件变量
# 循环求和 1, 4, 10, ...
while i <= n
res += i
# 更新条件变量
i += 1
i *= 2
end
res
end
### 双层 for 循环 ###
def nested_for_loop(n)
res = ""
# 循环 i = 1, 2, ..., n-1, n
for i in 1..n
# 循环 j = 1, 2, ..., n-1, n
for j in 1..n
res += "(#{i}, #{j}), "
end
end
res
end
### Driver Code ###
n = 5
res = for_loop n
puts "\nfor 循环的求和结果 res = #{res}"
res = while_loop n
puts "\nwhile 循环的求和结果 res = #{res}"
res = while_loop_ii n
puts "\nwhile 循环(两次更新)求和结果 res = #{res}"
res = nested_for_loop n
puts "\n双层 for 循环的遍历结果 #{res}"

@ -0,0 +1,69 @@
=begin
File: recursion.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 递归 ###
def recur(n)
# 终止条件
return 1 if n == 1
# 递:递归调用
res = recur n - 1
# 归:返回结果
n + res
end
### 使用迭代模拟递归 ###
def for_loop_recur(n)
# 使用一个显式的栈来模拟系统调用栈
stack = []
res = 0
# 递:递归调用
for i in n.downto(0)
# 通过“入栈操作”模拟“递”
stack << i
end
# 归:返回结果
while !stack.empty?
res += stack.pop
end
# res = 1+2+3+...+n
res
end
### 尾递归 ###
def tail_recur(n, res)
# 终止条件
return res if n == 0
# 尾递归调用
tail_recur n - 1, res + n
end
### 斐波那契数列:递归 ###
def fib(n)
# 终止条件 f(1) = 0, f(2) = 1
return n - 1 if n == 1 || n == 2
# 递归调用 f(n) = f(n-1) + f(n-2)
res = fib(n - 1) + fib(n - 2)
# 返回结果 f(n)
res
end
### Driver Code ###
n = 5
res = recur n
puts "\n递归函数的求和结果 res = #{res}"
res = for_loop_recur n
puts "\n使用迭代模拟递归求和结果 res = #{res}"
res = tail_recur n, 0
puts "\n尾递归函数的求和结果 res = #{res}"
res = fib n
puts "\n斐波那契数列的第 #{n} 项为 #{res}"

@ -0,0 +1,91 @@
=begin
File: space_complexity.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
require_relative '../utils/list_node'
require_relative '../utils/tree_node'
require_relative '../utils/print_util'
### 函数 ###
def function
# 执行某些操作
0
end
### 常数阶 ###
def constant(n)
# 常量、变量、对象占用 O(1) 空间
a = 0
nums = [0] * 10000
node = ListNode.new
# 循环中的变量占用 O(1) 空间
(0...n).each { c = 0 }
# 循环中的函数占用 O(1) 空间
(0...n).each { function }
end
### 线性阶 ###
def linear(n)
# 长度为 n 的列表占用 O(n) 空间
nums = Array.new n, 0
# 长度为 n 的哈希表占用 O(n) 空间
hmap = {}
for i in 0...n
hmap[i] = i.to_s
end
end
### 线性阶(递归实现)###
def linear_recur(n)
puts "递归 n = #{n}"
return if n == 1
linear_recur n - 1
end
### 平方阶 ###
def quadratic(n)
# 二维列表占用 O(n^2) 空间
Array.new(n) { Array.new n, 0 }
end
### 平方阶(递归实现)###
def quadratic_recur(n)
return 0 unless n > 0
# 数组 nums 长度为 n, n-1, ..., 2, 1
nums = Array.new n, 0
quadratic_recur n - 1
end
### 指数阶(建立满二叉树)###
def build_tree(n)
return if n == 0
TreeNode.new.tap do |root|
root.left = build_tree n - 1
root.right = build_tree n - 1
end
end
### Driver Code ###
n = 5
# 常数阶
constant n
# 线性阶
linear n
linear_recur n
# 平方阶
quadratic n
quadratic_recur n
# 指数阶
root = build_tree n
print_tree root

@ -0,0 +1,164 @@
=begin
File: time_complexity.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 常数阶 ###
def constant(n)
count = 0
size = 100000
(0...size).each { count += 1 }
count
end
### 线性阶 ###
def linear(n)
count = 0
(0...n).each { count += 1 }
count
end
### 线性阶(遍历数组)###
def array_traversal(nums)
count = 0
# 循环次数与数组长度成正比
for num in nums
count += 1
end
count
end
### 平方阶 ###
def quadratic(n)
count = 0
# 循环次数与数据大小 n 成平方关系
for i in 0...n
for j in 0...n
count += 1
end
end
count
end
### 平方阶(冒泡排序)###
def bubble_sort(nums)
count = 0 # 计数器
# 外循环:未排序区间为 [0, i]
for i in (nums.length - 1).downto(0)
# 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for j in 0...i
if nums[j] > nums[j + 1]
# 交换 nums[j] 与 nums[j + 1]
tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交换包含 3 个单元操作
end
end
end
count
end
### 指数阶(循环实现)###
def exponential(n)
count, base = 0, 1
# 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
(0...n).each do
(0...base).each { count += 1 }
base *= 2
end
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
count
end
### 指数阶(递归实现)###
def exp_recur(n)
return 1 if n == 1
exp_recur(n - 1) + exp_recur(n - 1) + 1
end
### 对数阶(循环实现)###
def logarithmic(n)
count = 0
while n > 1
n /= 2
count += 1
end
count
end
### 对数阶(递归实现)###
def log_recur(n)
return 0 unless n > 1
log_recur(n / 2) + 1
end
### 线性对数阶
def linear_log_recur(n)
return 1 unless n > 1
count = linear_log_recur(n / 2) + linear_log_recur(n / 2)
(0...n).each { count += 1 }
count
end
### 阶乘阶(递归实现)###
def factorial_recur(n)
return 1 if n == 0
count = 0
# 从 1 个分裂出 n 个
(0...n).each { count += factorial_recur(n - 1) }
count
end
### Driver Code ###
# 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
n = 8
puts "输入数据大小 n = #{n}"
count = constant n
puts "常数阶的操作数量 = #{count}"
count = linear n
puts "线性阶的操作数量 = #{count}"
count = array_traversal Array.new n, 0
puts "线性阶(遍历数组)的操作数量 = #{count}"
count = quadratic n
puts "平方阶的操作数量 = #{count}"
nums = Array.new(n) { |i| n - i } # [n, n-1, ..., 2, 1]
count = bubble_sort nums
puts "平方阶(冒泡排序)的操作数量 = #{count}"
count = exponential n
puts "指数阶(循环实现)的操作数量 = #{count}"
count = exp_recur n
puts "指数阶(递归实现)的操作数量 = #{count}"
count = logarithmic n
puts "对数阶(循环实现)的操作数量 = #{count}"
count = log_recur n
puts "对数阶(递归实现)的操作数量 = #{count}"
count = linear_log_recur n
puts "线性对数阶(递归实现)的操作数量 = #{count}"
count = factorial_recur n
puts "阶乘阶(递归实现)的操作数量 = #{count}"

@ -0,0 +1,34 @@
=begin
File: worst_best_time_complexity.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 ###
def random_number(n)
# 生成数组 nums =: 1, 2, 3, ..., n
nums = Array.new(n) { |i| i + 1 }
# 随机打乱数组元素
nums.shuffle!
end
### 查找数组 nums 中数字 1 所在索引 ###
def find_one(nums)
for i in 0...nums.length
# 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
# 当元素 1 在数组尾部时,达到最差时间复杂度 O(n)
return i if nums[i] == 1
end
-1
end
### Driver Code ###
for i in 0...10
n = 100
nums = random_number n
index = find_one nums
puts "\n数组 [ 1, 2, ..., n ] 被打乱后 = #{nums}"
puts "数字 1 的索引为 #{index}"
end

@ -13,3 +13,46 @@ def print_linked_list(head)
end
puts "#{list.join(" -> ")}"
end
class Trunk
attr_accessor :prev, :str
def initialize(prev, str)
@prev = prev
@str = str
end
end
def show_trunk(p)
return if p.nil?
show_trunk(p.prev)
print p.str
end
### 打印二叉树 ###
# This tree printer is borrowed from TECHIE DELIGHT
# https://www.techiedelight.com/c-program-print-binary-tree/
def print_tree(root, prev=nil, is_right=false)
return if root.nil?
prev_str = " "
trunk = Trunk.new prev, prev_str
print_tree root.right, trunk, true
if prev.nil?
trunk.str = "———"
elsif is_right
trunk.str = "/———"
prev_str = " |"
else
trunk.str = "\\———"
prev.str = prev_str
end
show_trunk trunk
puts " #{root.val}"
prev.str = prev_str if prev
trunk.str = " |"
print_tree root.left, trunk, false
end

@ -0,0 +1,18 @@
=begin
File: tree_node.rb
Created Time: 2024-03-30
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
=end
### 二叉树节点类 ###
class TreeNode
attr_accessor :val # 节点值
attr_accessor :height # 节点高度
attr_accessor :left # 左子节点引用
attr_accessor :right # 右子节点引用
def initialize(val=0)
@val = val
@height = 0
end
end

@ -335,7 +335,30 @@
=== "Ruby"
```ruby title=""
### 类 ###
class Node
attr_accessor :val # 节点值
attr_accessor :next # 指向下一节点的引用
def initialize(x)
@val = x
end
end
### 函数 ###
def function
# 执行某些操作...
0
end
### 算法 ###
def algorithm(n) # 输入数据
a = 0 # 暂存数据(常量)
b = 0 # 暂存数据(变量)
node = Node.new 0 # 暂存数据(对象)
c = function # 栈帧空间(调用函数)
a + b + c # 输出数据
end
```
=== "Zig"
@ -499,7 +522,11 @@
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 0 # O(1)
b = Array.new 10000 # O(1)
nums = Array.new n if n > 10 # O(n)
end
```
=== "Zig"
@ -763,7 +790,21 @@
=== "Ruby"
```ruby title=""
def function
# 执行某些操作
0
end
### 循环的空间复杂度为 O(1) ###
def loop(n)
(0...n).each { function }
end
### 递归的空间复杂度为 O(n) ###
def recur(n)
return if n == 1
recur n - 1
end
```
=== "Zig"

@ -189,7 +189,16 @@
=== "Ruby"
```ruby title=""
# 在某运行平台下
def algorithm(n)
a = 2 # 1 ns
a = a + 1 # 1 ns
a = a * 2 # 10 ns
# 循环 n 次
(n...0).each do # 1 ns
puts 0 # 5 ns
end
end
```
=== "Zig"
@ -474,7 +483,20 @@ $$
=== "Ruby"
```ruby title=""
# 算法 A 的时间复杂度:常数阶
def algorithm_A(n)
puts 0
end
# 算法 B 的时间复杂度:线性阶
def algorithm_B(n)
(0...n).each { puts 0 }
end
# 算法 C 的时间复杂度:常数阶
def algorithm_C(n)
(0...1_000_000).each { puts 0 }
end
```
=== "Zig"
@ -688,7 +710,15 @@ $$
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 1 # +1
a = a + 1 # +1
a = a * 2 # +1
# 循环 n 次
(0...n).each do # +1
puts 0 # +1
end
end
```
=== "Zig"
@ -970,7 +1000,16 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
=== "Ruby"
```ruby title=""
def algorithm(n)
a = 1 # +0技巧 1
a = a + n # +0技巧 1
# +n技巧 2
(0...(5 * n + 1)).each do { puts 0 }
# +n*n技巧 3
(0...(2 * n)).each do
(0...(n + 1)).each do { puts 0 }
end
end
```
=== "Zig"

Loading…
Cancel
Save