/** * File: n_queens.cs * Created Time: 2023-05-04 * Author: hpstory (hpstory1024@163.com) */ namespace hello_algo.chapter_backtracking; public class n_queens { /* 回溯算法:n 皇后 */ void Backtrack(int row, int n, List> state, List>> res, bool[] cols, bool[] diags1, bool[] diags2) { // 当放置完所有行时,记录解 if (row == n) { List> copyState = []; foreach (List sRow in state) { copyState.Add(new List(sRow)); } res.Add(copyState); return; } // 遍历所有列 for (int col = 0; col < n; col++) { // 计算该格子对应的主对角线和次对角线 int diag1 = row - col + n - 1; int diag2 = row + col; // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后 if (!cols[col] && !diags1[diag1] && !diags2[diag2]) { // 尝试:将皇后放置在该格子 state[row][col] = "Q"; cols[col] = diags1[diag1] = diags2[diag2] = true; // 放置下一行 Backtrack(row + 1, n, state, res, cols, diags1, diags2); // 回退:将该格子恢复为空位 state[row][col] = "#"; cols[col] = diags1[diag1] = diags2[diag2] = false; } } } /* 求解 n 皇后 */ List>> NQueens(int n) { // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位 List> state = []; for (int i = 0; i < n; i++) { List row = []; for (int j = 0; j < n; j++) { row.Add("#"); } state.Add(row); } bool[] cols = new bool[n]; // 记录列是否有皇后 bool[] diags1 = new bool[2 * n - 1]; // 记录主对角线上是否有皇后 bool[] diags2 = new bool[2 * n - 1]; // 记录次对角线上是否有皇后 List>> res = []; Backtrack(0, n, state, res, cols, diags1, diags2); return res; } [Test] public void Test() { int n = 4; List>> res = NQueens(n); Console.WriteLine("输入棋盘长宽为 " + n); Console.WriteLine("皇后放置方案共有 " + res.Count + " 种"); foreach (List> state in res) { Console.WriteLine("--------------------"); foreach (List row in state) { PrintUtil.PrintList(row); } } } }