/** * File: time_complexity.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ namespace hello_algo.chapter_computational_complexity; public class time_complexity { void Algorithm(int n) { int a = 1; // +0(技巧 1) a += n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } // 算法 A 时间复杂度:常数阶 void AlgorithmA(int n) { Console.WriteLine(0); } // 算法 B 时间复杂度:线性阶 void AlgorithmB(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 时间复杂度:常数阶 void AlgorithmC(int n) { for (int i = 0; i < 1000000; i++) { Console.WriteLine(0); } } /* 常数阶 */ int Constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } /* 线性阶 */ int Linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } /* 线性阶(遍历数组) */ int ArrayTraversal(int[] nums) { int count = 0; // 循环次数与数组长度成正比 foreach (int num in nums) { count++; } return count; } /* 平方阶 */ int Quadratic(int n) { int count = 0; // 循环次数与数据大小 n 成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* 平方阶(冒泡排序) */ int BubbleSort(int[] nums) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (int i = nums.Length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] (nums[j + 1], nums[j]) = (nums[j], nums[j + 1]); count += 3; // 元素交换包含 3 个单元操作 } } } return count; } /* 指数阶(循环实现) */ int Exponential(int n) { int count = 0, bas = 1; // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* 指数阶(递归实现) */ int ExpRecur(int n) { if (n == 1) return 1; return ExpRecur(n - 1) + ExpRecur(n - 1) + 1; } /* 对数阶(循环实现) */ int Logarithmic(int n) { int count = 0; while (n > 1) { n /= 2; count++; } return count; } /* 对数阶(递归实现) */ int LogRecur(int n) { if (n <= 1) return 0; return LogRecur(n / 2) + 1; } /* 线性对数阶 */ int LinearLogRecur(int n) { if (n <= 1) return 1; int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } /* 阶乘阶(递归实现) */ int FactorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += FactorialRecur(n - 1); } return count; } [Test] public void Test() { // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 int n = 8; Console.WriteLine("输入数据大小 n = " + n); int count = Constant(n); Console.WriteLine("常数阶的操作数量 = " + count); count = Linear(n); Console.WriteLine("线性阶的操作数量 = " + count); count = ArrayTraversal(new int[n]); Console.WriteLine("线性阶(遍历数组)的操作数量 = " + count); count = Quadratic(n); Console.WriteLine("平方阶的操作数量 = " + count); int[] nums = new int[n]; for (int i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] count = BubbleSort(nums); Console.WriteLine("平方阶(冒泡排序)的操作数量 = " + count); count = Exponential(n); Console.WriteLine("指数阶(循环实现)的操作数量 = " + count); count = ExpRecur(n); Console.WriteLine("指数阶(递归实现)的操作数量 = " + count); count = Logarithmic(n); Console.WriteLine("对数阶(循环实现)的操作数量 = " + count); count = LogRecur(n); Console.WriteLine("对数阶(递归实现)的操作数量 = " + count); count = LinearLogRecur(n); Console.WriteLine("线性对数阶(递归实现)的操作数量 = " + count); count = FactorialRecur(n); Console.WriteLine("阶乘阶(递归实现)的操作数量 = " + count); } }