""" File: min_path_sum.py Created Time: 2023-07-04 Author: krahets (krahets@163.com) """ from math import inf def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int: """最小路径和:暴力搜索""" # 若为左上角单元格,则终止搜索 if i == 0 and j == 0: return grid[0][0] # 若行列索引越界,则返回 +∞ 代价 if i < 0 or j < 0: return inf # 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价 up = min_path_sum_dfs(grid, i - 1, j) left = min_path_sum_dfs(grid, i, j - 1) # 返回从左上角到 (i, j) 的最小路径代价 return min(left, up) + grid[i][j] def min_path_sum_dfs_mem( grid: list[list[int]], mem: list[list[int]], i: int, j: int ) -> int: """最小路径和:记忆化搜索""" # 若为左上角单元格,则终止搜索 if i == 0 and j == 0: return grid[0][0] # 若行列索引越界,则返回 +∞ 代价 if i < 0 or j < 0: return inf # 若已有记录,则直接返回 if mem[i][j] != -1: return mem[i][j] # 左边和上边单元格的最小路径代价 up = min_path_sum_dfs_mem(grid, mem, i - 1, j) left = min_path_sum_dfs_mem(grid, mem, i, j - 1) # 记录并返回左上角到 (i, j) 的最小路径代价 mem[i][j] = min(left, up) + grid[i][j] return mem[i][j] def min_path_sum_dp(grid: list[list[int]]) -> int: """最小路径和:动态规划""" n, m = len(grid), len(grid[0]) # 初始化 dp 表 dp = [[0] * m for _ in range(n)] dp[0][0] = grid[0][0] # 状态转移:首行 for j in range(1, m): dp[0][j] = dp[0][j - 1] + grid[0][j] # 状态转移:首列 for i in range(1, n): dp[i][0] = dp[i - 1][0] + grid[i][0] # 状态转移:其余行和列 for i in range(1, n): for j in range(1, m): dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j] return dp[n - 1][m - 1] def min_path_sum_dp_comp(grid: list[list[int]]) -> int: """最小路径和:空间优化后的动态规划""" n, m = len(grid), len(grid[0]) # 初始化 dp 表 dp = [0] * m # 状态转移:首行 dp[0] = grid[0][0] for j in range(1, m): dp[j] = dp[j - 1] + grid[0][j] # 状态转移:其余行 for i in range(1, n): # 状态转移:首列 dp[0] = dp[0] + grid[i][0] # 状态转移:其余列 for j in range(1, m): dp[j] = min(dp[j - 1], dp[j]) + grid[i][j] return dp[m - 1] """Driver Code""" if __name__ == "__main__": grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]] n, m = len(grid), len(grid[0]) # 暴力搜索 res = min_path_sum_dfs(grid, n - 1, m - 1) print(f"从左上角到右下角的最小路径和为 {res}") # 记忆化搜索 mem = [[-1] * m for _ in range(n)] res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1) print(f"从左上角到右下角的最小路径和为 {res}") # 动态规划 res = min_path_sum_dp(grid) print(f"从左上角到右下角的最小路径和为 {res}") # 空间优化后的动态规划 res = min_path_sum_dp_comp(grid) print(f"从左上角到右下角的最小路径和为 {res}")