""" File: heap.py Created Time: 2023-02-23 Author: krahets (krahets@163.com) """ import sys from pathlib import Path sys.path.append(str(Path(__file__).parent.parent)) from modules import print_heap import heapq def test_push(heap: list, val: int, flag: int = 1): heapq.heappush(heap, flag * val) # 元素入堆 print(f"\n元素 {val} 入堆后") print_heap([flag * val for val in heap]) def test_pop(heap: list, flag: int = 1): val = flag * heapq.heappop(heap) # 堆顶元素出堆 print(f"\n堆顶元素 {val} 出堆后") print_heap([flag * val for val in heap]) """Driver Code""" if __name__ == "__main__": # 初始化小顶堆 min_heap, flag = [], 1 # 初始化大顶堆 max_heap, flag = [], -1 print("\n以下测试样例为大顶堆") # Python 的 heapq 模块默认实现小顶堆 # 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆 # 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆 # 元素入堆 test_push(max_heap, 1, flag) test_push(max_heap, 3, flag) test_push(max_heap, 2, flag) test_push(max_heap, 5, flag) test_push(max_heap, 4, flag) # 获取堆顶元素 peek: int = flag * max_heap[0] print(f"\n堆顶元素为 {peek}") # 堆顶元素出堆 test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) # 获取堆大小 size: int = len(max_heap) print(f"\n堆元素数量为 {size}") # 判断堆是否为空 is_empty: bool = not max_heap print(f"\n堆是否为空 {is_empty}") # 输入列表并建堆 # 时间复杂度为 O(n) ,而非 O(nlogn) min_heap = [1, 3, 2, 5, 4] heapq.heapify(min_heap) print("\n输入列表并建立小顶堆后") print_heap(min_heap)