=begin File: time_complexity.rb Created Time: 2024-03-30 Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com) =end ### 常数阶 ### def constant(n) count = 0 size = 100000 (0...size).each { count += 1 } count end ### 线性阶 ### def linear(n) count = 0 (0...n).each { count += 1 } count end ### 线性阶(遍历数组)### def array_traversal(nums) count = 0 # 循环次数与数组长度成正比 for num in nums count += 1 end count end ### 平方阶 ### def quadratic(n) count = 0 # 循环次数与数据大小 n 成平方关系 for i in 0...n for j in 0...n count += 1 end end count end ### 平方阶(冒泡排序)### def bubble_sort(nums) count = 0 # 计数器 # 外循环:未排序区间为 [0, i] for i in (nums.length - 1).downto(0) # 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for j in 0...i if nums[j] > nums[j + 1] # 交换 nums[j] 与 nums[j + 1] tmp = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 # 元素交换包含 3 个单元操作 end end end count end ### 指数阶(循环实现)### def exponential(n) count, base = 0, 1 # 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) (0...n).each do (0...base).each { count += 1 } base *= 2 end # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 count end ### 指数阶(递归实现)### def exp_recur(n) return 1 if n == 1 exp_recur(n - 1) + exp_recur(n - 1) + 1 end ### 对数阶(循环实现)### def logarithmic(n) count = 0 while n > 1 n /= 2 count += 1 end count end ### 对数阶(递归实现)### def log_recur(n) return 0 unless n > 1 log_recur(n / 2) + 1 end ### 线性对数阶 ### def linear_log_recur(n) return 1 unless n > 1 count = linear_log_recur(n / 2) + linear_log_recur(n / 2) (0...n).each { count += 1 } count end ### 阶乘阶(递归实现)### def factorial_recur(n) return 1 if n == 0 count = 0 # 从 1 个分裂出 n 个 (0...n).each { count += factorial_recur(n - 1) } count end ### Driver Code ### if __FILE__ == $0 # 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 n = 8 puts "输入数据大小 n = #{n}" count = constant(n) puts "常数阶的操作数量 = #{count}" count = linear(n) puts "线性阶的操作数量 = #{count}" count = array_traversal(Array.new(n, 0)) puts "线性阶(遍历数组)的操作数量 = #{count}" count = quadratic(n) puts "平方阶的操作数量 = #{count}" nums = Array.new(n) { |i| n - i } # [n, n-1, ..., 2, 1] count = bubble_sort(nums) puts "平方阶(冒泡排序)的操作数量 = #{count}" count = exponential(n) puts "指数阶(循环实现)的操作数量 = #{count}" count = exp_recur(n) puts "指数阶(递归实现)的操作数量 = #{count}" count = logarithmic(n) puts "对数阶(循环实现)的操作数量 = #{count}" count = log_recur(n) puts "对数阶(递归实现)的操作数量 = #{count}" count = linear_log_recur(n) puts "线性对数阶(递归实现)的操作数量 = #{count}" count = factorial_recur(n) puts "阶乘阶(递归实现)的操作数量 = #{count}" end