/** * File: binary_search_edge.cpp * Created Time: 2023-08-04 * Author: krahets (krahets@163.com) */ #include "../utils/common.hpp" /* Binary search for insertion point (with duplicate elements) */ int binarySearchInsertion(const vector &nums, int target) { int i = 0, j = nums.size() - 1; // Initialize double closed interval [0, n-1] while (i <= j) { int m = i + (j - i) / 2; // Calculate midpoint index m if (nums[m] < target) { i = m + 1; // Target is in interval [m+1, j] } else { j = m - 1; // First element less than target is in interval [i, m-1] } } // Return insertion point i return i; } /* Binary search for the leftmost target */ int binarySearchLeftEdge(vector &nums, int target) { // Equivalent to finding the insertion point of target int i = binarySearchInsertion(nums, target); // Did not find target, thus return -1 if (i == nums.size() || nums[i] != target) { return -1; } // Found target, return index i return i; } /* Binary search for the rightmost target */ int binarySearchRightEdge(vector &nums, int target) { // Convert to finding the leftmost target + 1 int i = binarySearchInsertion(nums, target + 1); // j points to the rightmost target, i points to the first element greater than target int j = i - 1; // Did not find target, thus return -1 if (j == -1 || nums[j] != target) { return -1; } // Found target, return index j return j; } /* Driver Code */ int main() { // Array with duplicate elements vector nums = {1, 3, 6, 6, 6, 6, 6, 10, 12, 15}; cout << "\nArray nums = "; printVector(nums); // Binary search for left and right boundaries for (int target : {6, 7}) { int index = binarySearchLeftEdge(nums, target); cout << "The leftmost index of element " << target << " is " << index << endl; index = binarySearchRightEdge(nums, target); cout << "The rightmost index of element " << target << " is " << index << endl; } return 0; }