/** * File: time_complexity.swift * Created Time: 2022-12-26 * Author: nuomi1 (nuomi1@qq.com) */ /* 常數階 */ func constant(n: Int) -> Int { var count = 0 let size = 100_000 for _ in 0 ..< size { count += 1 } return count } /* 線性階 */ func linear(n: Int) -> Int { var count = 0 for _ in 0 ..< n { count += 1 } return count } /* 線性階(走訪陣列) */ func arrayTraversal(nums: [Int]) -> Int { var count = 0 // 迴圈次數與陣列長度成正比 for _ in nums { count += 1 } return count } /* 平方階 */ func quadratic(n: Int) -> Int { var count = 0 // 迴圈次數與資料大小 n 成平方關係 for _ in 0 ..< n { for _ in 0 ..< n { count += 1 } } return count } /* 平方階(泡沫排序) */ func bubbleSort(nums: inout [Int]) -> Int { var count = 0 // 計數器 // 外迴圈:未排序區間為 [0, i] for i in nums.indices.dropFirst().reversed() { // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端 for j in 0 ..< i { if nums[j] > nums[j + 1] { // 交換 nums[j] 與 nums[j + 1] let tmp = nums[j] nums[j] = nums[j + 1] nums[j + 1] = tmp count += 3 // 元素交換包含 3 個單元操作 } } } return count } /* 指數階(迴圈實現) */ func exponential(n: Int) -> Int { var count = 0 var base = 1 // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1) for _ in 0 ..< n { for _ in 0 ..< base { count += 1 } base *= 2 } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count } /* 指數階(遞迴實現) */ func expRecur(n: Int) -> Int { if n == 1 { return 1 } return expRecur(n: n - 1) + expRecur(n: n - 1) + 1 } /* 對數階(迴圈實現) */ func logarithmic(n: Int) -> Int { var count = 0 var n = n while n > 1 { n = n / 2 count += 1 } return count } /* 對數階(遞迴實現) */ func logRecur(n: Int) -> Int { if n <= 1 { return 0 } return logRecur(n: n / 2) + 1 } /* 線性對數階 */ func linearLogRecur(n: Int) -> Int { if n <= 1 { return 1 } var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2) for _ in stride(from: 0, to: n, by: 1) { count += 1 } return count } /* 階乘階(遞迴實現) */ func factorialRecur(n: Int) -> Int { if n == 0 { return 1 } var count = 0 // 從 1 個分裂出 n 個 for _ in 0 ..< n { count += factorialRecur(n: n - 1) } return count } @main enum TimeComplexity { /* Driver Code */ static func main() { // 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢 let n = 8 print("輸入資料大小 n = \(n)") var count = constant(n: n) print("常數階的操作數量 = \(count)") count = linear(n: n) print("線性階的操作數量 = \(count)") count = arrayTraversal(nums: Array(repeating: 0, count: n)) print("線性階(走訪陣列)的操作數量 = \(count)") count = quadratic(n: n) print("平方階的操作數量 = \(count)") var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1] count = bubbleSort(nums: &nums) print("平方階(泡沫排序)的操作數量 = \(count)") count = exponential(n: n) print("指數階(迴圈實現)的操作數量 = \(count)") count = expRecur(n: n) print("指數階(遞迴實現)的操作數量 = \(count)") count = logarithmic(n: n) print("對數階(迴圈實現)的操作數量 = \(count)") count = logRecur(n: n) print("對數階(遞迴實現)的操作數量 = \(count)") count = linearLogRecur(n: n) print("線性對數階(遞迴實現)的操作數量 = \(count)") count = factorialRecur(n: n) print("階乘階(遞迴實現)的操作數量 = \(count)") } }