# 雜湊演算法 前兩節介紹了雜湊表的工作原理和雜湊衝突的處理方法。然而無論是開放定址還是鏈式位址,**它們只能保證雜湊表可以在發生衝突時正常工作,而無法減少雜湊衝突的發生**。 如果雜湊衝突過於頻繁,雜湊表的效能則會急劇劣化。如下圖所示,對於鏈式位址雜湊表,理想情況下鍵值對均勻分佈在各個桶中,達到最佳查詢效率;最差情況下所有鍵值對都儲存到同一個桶中,時間複雜度退化至 $O(n)$ 。 ![雜湊衝突的最佳情況與最差情況](hash_algorithm.assets/hash_collision_best_worst_condition.png) **鍵值對的分佈情況由雜湊函式決定**。回憶雜湊函式的計算步驟,先計算雜湊值,再對陣列長度取模: ```shell index = hash(key) % capacity ``` 觀察以上公式,當雜湊表容量 `capacity` 固定時,**雜湊演算法 `hash()` 決定了輸出值**,進而決定了鍵值對在雜湊表中的分佈情況。 這意味著,為了降低雜湊衝突的發生機率,我們應當將注意力集中在雜湊演算法 `hash()` 的設計上。 ## 雜湊演算法的目標 為了實現“既快又穩”的雜湊表資料結構,雜湊演算法應具備以下特點。 - **確定性**:對於相同的輸入,雜湊演算法應始終產生相同的輸出。這樣才能確保雜湊表是可靠的。 - **效率高**:計算雜湊值的過程應該足夠快。計算開銷越小,雜湊表的實用性越高。 - **均勻分佈**:雜湊演算法應使得鍵值對均勻分佈在雜湊表中。分佈越均勻,雜湊衝突的機率就越低。 實際上,雜湊演算法除了可以用於實現雜湊表,還廣泛應用於其他領域中。 - **密碼儲存**:為了保護使用者密碼的安全,系統通常不會直接儲存使用者的明文密碼,而是儲存密碼的雜湊值。當用戶輸入密碼時,系統會對輸入的密碼計算雜湊值,然後與儲存的雜湊值進行比較。如果兩者匹配,那麼密碼就被視為正確。 - **資料完整性檢查**:資料傳送方可以計算資料的雜湊值並將其一同傳送;接收方可以重新計算接收到的資料的雜湊值,並與接收到的雜湊值進行比較。如果兩者匹配,那麼資料就被視為完整。 對於密碼學的相關應用,為了防止從雜湊值推導出原始密碼等逆向工程,雜湊演算法需要具備更高等級的安全特性。 - **單向性**:無法透過雜湊值反推出關於輸入資料的任何資訊。 - **抗碰撞性**:應當極難找到兩個不同的輸入,使得它們的雜湊值相同。 - **雪崩效應**:輸入的微小變化應當導致輸出的顯著且不可預測的變化。 請注意,**“均勻分佈”與“抗碰撞性”是兩個獨立的概念**,滿足均勻分佈不一定滿足抗碰撞性。例如,在隨機輸入 `key` 下,雜湊函式 `key % 100` 可以產生均勻分佈的輸出。然而該雜湊演算法過於簡單,所有後兩位相等的 `key` 的輸出都相同,因此我們可以很容易地從雜湊值反推出可用的 `key` ,從而破解密碼。 ## 雜湊演算法的設計 雜湊演算法的設計是一個需要考慮許多因素的複雜問題。然而對於某些要求不高的場景,我們也能設計一些簡單的雜湊演算法。 - **加法雜湊**:對輸入的每個字元的 ASCII 碼進行相加,將得到的總和作為雜湊值。 - **乘法雜湊**:利用乘法的不相關性,每輪乘以一個常數,將各個字元的 ASCII 碼累積到雜湊值中。 - **互斥或雜湊**:將輸入資料的每個元素透過互斥或操作累積到一個雜湊值中。 - **旋轉雜湊**:將每個字元的 ASCII 碼累積到一個雜湊值中,每次累積之前都會對雜湊值進行旋轉操作。 ```src [file]{simple_hash}-[class]{}-[func]{rot_hash} ``` 觀察發現,每種雜湊演算法的最後一步都是對大質數 $1000000007$ 取模,以確保雜湊值在合適的範圍內。值得思考的是,為什麼要強調對質數取模,或者說對合數取模的弊端是什麼?這是一個有趣的問題。 先丟擲結論:**使用大質數作為模數,可以最大化地保證雜湊值的均勻分佈**。因為質數不與其他數字存在公約數,可以減少因取模操作而產生的週期性模式,從而避免雜湊衝突。 舉個例子,假設我們選擇合數 $9$ 作為模數,它可以被 $3$ 整除,那麼所有可以被 $3$ 整除的 `key` 都會被對映到 $0$、$3$、$6$ 這三個雜湊值。 $$ \begin{aligned} \text{modulus} & = 9 \newline \text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline \text{hash} & = \{ 0, 3, 6, 0, 3, 6, 0, 3, 6, 0, 3, 6,\dots \} \end{aligned} $$ 如果輸入 `key` 恰好滿足這種等差數列的資料分佈,那麼雜湊值就會出現聚堆積,從而加重雜湊衝突。現在,假設將 `modulus` 替換為質數 $13$ ,由於 `key` 和 `modulus` 之間不存在公約數,因此輸出的雜湊值的均勻性會明顯提升。 $$ \begin{aligned} \text{modulus} & = 13 \newline \text{key} & = \{ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, \dots \} \newline \text{hash} & = \{ 0, 3, 6, 9, 12, 2, 5, 8, 11, 1, 4, 7, \dots \} \end{aligned} $$ 值得說明的是,如果能夠保證 `key` 是隨機均勻分佈的,那麼選擇質數或者合數作為模數都可以,它們都能輸出均勻分佈的雜湊值。而當 `key` 的分佈存在某種週期性時,對合數取模更容易出現聚集現象。 總而言之,我們通常選取質數作為模數,並且這個質數最好足夠大,以儘可能消除週期性模式,提升雜湊演算法的穩健性。 ## 常見雜湊演算法 不難發現,以上介紹的簡單雜湊演算法都比較“脆弱”,遠遠沒有達到雜湊演算法的設計目標。例如,由於加法和互斥或滿足交換律,因此加法雜湊和互斥或雜湊無法區分內容相同但順序不同的字串,這可能會加劇雜湊衝突,並引起一些安全問題。 在實際中,我們通常會用一些標準雜湊演算法,例如 MD5、SHA-1、SHA-2 和 SHA-3 等。它們可以將任意長度的輸入資料對映到恆定長度的雜湊值。 近一個世紀以來,雜湊演算法處在不斷升級與最佳化的過程中。一部分研究人員努力提升雜湊演算法的效能,另一部分研究人員和駭客則致力於尋找雜湊演算法的安全性問題。下表展示了在實際應用中常見的雜湊演算法。 - MD5 和 SHA-1 已多次被成功攻擊,因此它們被各類安全應用棄用。 - SHA-2 系列中的 SHA-256 是最安全的雜湊演算法之一,仍未出現成功的攻擊案例,因此常用在各類安全應用與協議中。 - SHA-3 相較 SHA-2 的實現開銷更低、計算效率更高,但目前使用覆蓋度不如 SHA-2 系列。

  常見的雜湊演算法

| | MD5 | SHA-1 | SHA-2 | SHA-3 | | -------- | ------------------------------ | ---------------- | ---------------------------- | ------------------- | | 推出時間 | 1992 | 1995 | 2002 | 2008 | | 輸出長度 | 128 bit | 160 bit | 256/512 bit | 224/256/384/512 bit | | 雜湊衝突 | 較多 | 較多 | 很少 | 很少 | | 安全等級 | 低,已被成功攻擊 | 低,已被成功攻擊 | 高 | 高 | | 應用 | 已被棄用,仍用於資料完整性檢查 | 已被棄用 | 加密貨幣交易驗證、數字簽名等 | 可用於替代 SHA-2 | ## 資料結構的雜湊值 我們知道,雜湊表的 `key` 可以是整數、小數或字串等資料型別。程式語言通常會為這些資料型別提供內建的雜湊演算法,用於計算雜湊表中的桶索引。以 Python 為例,我們可以呼叫 `hash()` 函式來計算各種資料型別的雜湊值。 - 整數和布林量的雜湊值就是其本身。 - 浮點數和字串的雜湊值計算較為複雜,有興趣的讀者請自行學習。 - 元組的雜湊值是對其中每一個元素進行雜湊,然後將這些雜湊值組合起來,得到單一的雜湊值。 - 物件的雜湊值基於其記憶體位址生成。透過重寫物件的雜湊方法,可實現基於內容生成雜湊值。 !!! tip 請注意,不同程式語言的內建雜湊值計算函式的定義和方法不同。 === "Python" ```python title="built_in_hash.py" num = 3 hash_num = hash(num) # 整數 3 的雜湊值為 3 bol = True hash_bol = hash(bol) # 布林量 True 的雜湊值為 1 dec = 3.14159 hash_dec = hash(dec) # 小數 3.14159 的雜湊值為 326484311674566659 str = "Hello 演算法" hash_str = hash(str) # 字串“Hello 演算法”的雜湊值為 4617003410720528961 tup = (12836, "小哈") hash_tup = hash(tup) # 元組 (12836, '小哈') 的雜湊值為 1029005403108185979 obj = ListNode(0) hash_obj = hash(obj) # 節點物件 的雜湊值為 274267521 ``` === "C++" ```cpp title="built_in_hash.cpp" int num = 3; size_t hashNum = hash()(num); // 整數 3 的雜湊值為 3 bool bol = true; size_t hashBol = hash()(bol); // 布林量 1 的雜湊值為 1 double dec = 3.14159; size_t hashDec = hash()(dec); // 小數 3.14159 的雜湊值為 4614256650576692846 string str = "Hello 演算法"; size_t hashStr = hash()(str); // 字串“Hello 演算法”的雜湊值為 15466937326284535026 // 在 C++ 中,內建 std:hash() 僅提供基本資料型別的雜湊值計算 // 陣列、物件的雜湊值計算需要自行實現 ``` === "Java" ```java title="built_in_hash.java" int num = 3; int hashNum = Integer.hashCode(num); // 整數 3 的雜湊值為 3 boolean bol = true; int hashBol = Boolean.hashCode(bol); // 布林量 true 的雜湊值為 1231 double dec = 3.14159; int hashDec = Double.hashCode(dec); // 小數 3.14159 的雜湊值為 -1340954729 String str = "Hello 演算法"; int hashStr = str.hashCode(); // 字串“Hello 演算法”的雜湊值為 -727081396 Object[] arr = { 12836, "小哈" }; int hashTup = Arrays.hashCode(arr); // 陣列 [12836, 小哈] 的雜湊值為 1151158 ListNode obj = new ListNode(0); int hashObj = obj.hashCode(); // 節點物件 utils.ListNode@7dc5e7b4 的雜湊值為 2110121908 ``` === "C#" ```csharp title="built_in_hash.cs" int num = 3; int hashNum = num.GetHashCode(); // 整數 3 的雜湊值為 3; bool bol = true; int hashBol = bol.GetHashCode(); // 布林量 true 的雜湊值為 1; double dec = 3.14159; int hashDec = dec.GetHashCode(); // 小數 3.14159 的雜湊值為 -1340954729; string str = "Hello 演算法"; int hashStr = str.GetHashCode(); // 字串“Hello 演算法”的雜湊值為 -586107568; object[] arr = [12836, "小哈"]; int hashTup = arr.GetHashCode(); // 陣列 [12836, 小哈] 的雜湊值為 42931033; ListNode obj = new(0); int hashObj = obj.GetHashCode(); // 節點物件 0 的雜湊值為 39053774; ``` === "Go" ```go title="built_in_hash.go" // Go 未提供內建 hash code 函式 ``` === "Swift" ```swift title="built_in_hash.swift" let num = 3 let hashNum = num.hashValue // 整數 3 的雜湊值為 9047044699613009734 let bol = true let hashBol = bol.hashValue // 布林量 true 的雜湊值為 -4431640247352757451 let dec = 3.14159 let hashDec = dec.hashValue // 小數 3.14159 的雜湊值為 -2465384235396674631 let str = "Hello 演算法" let hashStr = str.hashValue // 字串“Hello 演算法”的雜湊值為 -7850626797806988787 let arr = [AnyHashable(12836), AnyHashable("小哈")] let hashTup = arr.hashValue // 陣列 [AnyHashable(12836), AnyHashable("小哈")] 的雜湊值為 -2308633508154532996 let obj = ListNode(x: 0) let hashObj = obj.hashValue // 節點物件 utils.ListNode 的雜湊值為 -2434780518035996159 ``` === "JS" ```javascript title="built_in_hash.js" // JavaScript 未提供內建 hash code 函式 ``` === "TS" ```typescript title="built_in_hash.ts" // TypeScript 未提供內建 hash code 函式 ``` === "Dart" ```dart title="built_in_hash.dart" int num = 3; int hashNum = num.hashCode; // 整數 3 的雜湊值為 34803 bool bol = true; int hashBol = bol.hashCode; // 布林值 true 的雜湊值為 1231 double dec = 3.14159; int hashDec = dec.hashCode; // 小數 3.14159 的雜湊值為 2570631074981783 String str = "Hello 演算法"; int hashStr = str.hashCode; // 字串“Hello 演算法”的雜湊值為 468167534 List arr = [12836, "小哈"]; int hashArr = arr.hashCode; // 陣列 [12836, 小哈] 的雜湊值為 976512528 ListNode obj = new ListNode(0); int hashObj = obj.hashCode; // 節點物件 Instance of 'ListNode' 的雜湊值為 1033450432 ``` === "Rust" ```rust title="built_in_hash.rs" use std::collections::hash_map::DefaultHasher; use std::hash::{Hash, Hasher}; let num = 3; let mut num_hasher = DefaultHasher::new(); num.hash(&mut num_hasher); let hash_num = num_hasher.finish(); // 整數 3 的雜湊值為 568126464209439262 let bol = true; let mut bol_hasher = DefaultHasher::new(); bol.hash(&mut bol_hasher); let hash_bol = bol_hasher.finish(); // 布林量 true 的雜湊值為 4952851536318644461 let dec: f32 = 3.14159; let mut dec_hasher = DefaultHasher::new(); dec.to_bits().hash(&mut dec_hasher); let hash_dec = dec_hasher.finish(); // 小數 3.14159 的雜湊值為 2566941990314602357 let str = "Hello 演算法"; let mut str_hasher = DefaultHasher::new(); str.hash(&mut str_hasher); let hash_str = str_hasher.finish(); // 字串“Hello 演算法”的雜湊值為 16092673739211250988 let arr = (&12836, &"小哈"); let mut tup_hasher = DefaultHasher::new(); arr.hash(&mut tup_hasher); let hash_tup = tup_hasher.finish(); // 元組 (12836, "小哈") 的雜湊值為 1885128010422702749 let node = ListNode::new(42); let mut hasher = DefaultHasher::new(); node.borrow().val.hash(&mut hasher); let hash = hasher.finish(); // 節點物件 RefCell { value: ListNode { val: 42, next: None } } 的雜湊值為15387811073369036852 ``` === "C" ```c title="built_in_hash.c" // C 未提供內建 hash code 函式 ``` === "Kotlin" ```kotlin title="built_in_hash.kt" val num = 3 val hashNum = num.hashCode() // 整數 3 的雜湊值為 3 val bol = true val hashBol = bol.hashCode() // 布林量 true 的雜湊值為 1231 val dec = 3.14159 val hashDec = dec.hashCode() // 小數 3.14159 的雜湊值為 -1340954729 val str = "Hello 演算法" val hashStr = str.hashCode() // 字串“Hello 演算法”的雜湊值為 -727081396 val arr = arrayOf(12836, "小哈") val hashTup = arr.hashCode() // 陣列 [12836, 小哈] 的雜湊值為 189568618 val obj = ListNode(0) val hashObj = obj.hashCode() // 節點物件 utils.ListNode@1d81eb93 的雜湊值為 495053715 ``` === "Ruby" ```ruby title="built_in_hash.rb" num = 3 hash_num = num.hash # 整數 3 的雜湊值為 -4385856518450339636 bol = true hash_bol = bol.hash # 布林量 true 的雜湊值為 -1617938112149317027 dec = 3.14159 hash_dec = dec.hash # 小數 3.14159 的雜湊值為 -1479186995943067893 str = "Hello 演算法" hash_str = str.hash # 字串“Hello 演算法”的雜湊值為 -4075943250025831763 tup = [12836, '小哈'] hash_tup = tup.hash # 元組 (12836, '小哈') 的雜湊值為 1999544809202288822 obj = ListNode.new(0) hash_obj = obj.hash # 節點物件 # 的雜湊值為 4302940560806366381 ``` === "Zig" ```zig title="built_in_hash.zig" ``` ??? pythontutor "視覺化執行" https://pythontutor.com/render.html#code=class%20ListNode%3A%0A%20%20%20%20%22%22%22%E9%8F%88%E7%B5%90%E4%B8%B2%E5%88%97%E7%AF%80%E9%BB%9E%E9%A1%9E%E5%88%A5%22%22%22%0A%20%20%20%20def%20__init__%28self%2C%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%23%20%E7%AF%80%E9%BB%9E%E5%80%BC%0A%20%20%20%20%20%20%20%20self.next%3A%20ListNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%BE%8C%E7%B9%BC%E7%AF%80%E9%BB%9E%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20num%20%3D%203%0A%20%20%20%20hash_num%20%3D%20hash%28num%29%0A%20%20%20%20%23%20%E6%95%B4%E6%95%B8%203%20%E7%9A%84%E9%9B%9C%E6%B9%8A%E5%80%BC%E7%82%BA%203%0A%0A%20%20%20%20bol%20%3D%20True%0A%20%20%20%20hash_bol%20%3D%20hash%28bol%29%0A%20%20%20%20%23%20%E5%B8%83%E6%9E%97%E9%87%8F%20True%20%E7%9A%84%E9%9B%9C%E6%B9%8A%E5%80%BC%E7%82%BA%201%0A%0A%20%20%20%20dec%20%3D%203.14159%0A%20%20%20%20hash_dec%20%3D%20hash%28dec%29%0A%20%20%20%20%23%20%E5%B0%8F%E6%95%B8%203.14159%20%E7%9A%84%E9%9B%9C%E6%B9%8A%E5%80%BC%E7%82%BA%20326484311674566659%0A%0A%20%20%20%20str%20%3D%20%22Hello%20%E6%BC%94%E7%AE%97%E6%B3%95%22%0A%20%20%20%20hash_str%20%3D%20hash%28str%29%0A%20%20%20%20%23%20%E5%AD%97%E4%B8%B2%E2%80%9CHello%20%E6%BC%94%E7%AE%97%E6%B3%95%E2%80%9D%E7%9A%84%E9%9B%9C%E6%B9%8A%E5%80%BC%E7%82%BA%204617003410720528961%0A%0A%20%20%20%20tup%20%3D%20%2812836%2C%20%22%E5%B0%8F%E5%93%88%22%29%0A%20%20%20%20hash_tup%20%3D%20hash%28tup%29%0A%20%20%20%20%23%20%E5%85%83%E7%B5%84%20%2812836%2C%20%27%E5%B0%8F%E5%93%88%27%29%20%E7%9A%84%E9%9B%9C%E6%B9%8A%E5%80%BC%E7%82%BA%201029005403108185979%0A%0A%20%20%20%20obj%20%3D%20ListNode%280%29%0A%20%20%20%20hash_obj%20%3D%20hash%28obj%29%0A%20%20%20%20%23%20%E7%AF%80%E9%BB%9E%E7%89%A9%E4%BB%B6%20%3CListNode%20object%20at%200x1058fd810%3E%20%E7%9A%84%E9%9B%9C%E6%B9%8A%E5%80%BC%E7%82%BA%20274267521&cumulative=false&curInstr=19&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false 在許多程式語言中,**只有不可變物件才可作為雜湊表的 `key`** 。假如我們將串列(動態陣列)作為 `key` ,當串列的內容發生變化時,它的雜湊值也隨之改變,我們就無法在雜湊表中查詢到原先的 `value` 了。 雖然自定義物件(比如鏈結串列節點)的成員變數是可變的,但它是可雜湊的。**這是因為物件的雜湊值通常是基於記憶體位址生成的**,即使物件的內容發生了變化,但它的記憶體位址不變,雜湊值仍然是不變的。 細心的你可能發現在不同控制檯中執行程式時,輸出的雜湊值是不同的。**這是因為 Python 直譯器在每次啟動時,都會為字串雜湊函式加入一個隨機的鹽(salt)值**。這種做法可以有效防止 HashDoS 攻擊,提升雜湊演算法的安全性。