# 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. **确定运行平台**,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. **评估各种计算操作所需的运行时间**,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作 `print()` 需要 5 ns 等。 3. **统计代码中所有的计算操作**,并将所有操作的执行时间求和,从而得到运行时间。 例如在以下代码中,输入数据大小为 $n$ : === "Python" ```python title="" # 在某运行平台下 def algorithm(n: int): a = 2 # 1 ns a = a + 1 # 1 ns a = a * 2 # 10 ns # 循环 n 次 for _ in range(n): # 1 ns print(0) # 5 ns ``` === "C++" ```cpp title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ cout << 0 << endl; // 5 ns } } ``` === "Java" ```java title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ System.out.println(0); // 5 ns } } ``` === "C#" ```csharp title="" // 在某运行平台下 void Algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ Console.WriteLine(0); // 5 ns } } ``` === "Go" ```go title="" // 在某运行平台下 func algorithm(n int) { a := 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for i := 0; i < n; i++ { // 1 ns fmt.Println(a) // 5 ns } } ``` === "Swift" ```swift title="" // 在某运行平台下 func algorithm(n: Int) { var a = 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for _ in 0 ..< n { // 1 ns print(0) // 5 ns } } ``` === "JS" ```javascript title="" // 在某运行平台下 function algorithm(n) { var a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ console.log(0); // 5 ns } } ``` === "TS" ```typescript title="" // 在某运行平台下 function algorithm(n: number): void { var a: number = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for(let i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ console.log(0); // 5 ns } } ``` === "Dart" ```dart title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ print(0); // 5 ns } } ``` === "Rust" ```rust title="" // 在某运行平台下 fn algorithm(n: i32) { let mut a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for _ in 0..n { // 1 ns ,每轮都要执行 i++ println!("{}", 0); // 5 ns } } ``` === "C" ```c title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ printf("%d", 0); // 5 ns } } ``` === "Kotlin" ```kotlin title="" // 在某运行平台下 fun algorithm(n: Int) { var a = 2 // 1 ns a = a + 1 // 1 ns a = a * 2 // 10 ns // 循环 n 次 for (i in 0.. 1$ 时比算法 `A` 更慢,在 $n > 1000000$ 时比算法 `C` 更慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。 - **时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 - **时间复杂度也存在一定的局限性**。例如,尽管算法 `A` 和 `C` 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 `B` 的时间复杂度比 `C` 高,但在输入数据大小 $n$ 较小时,算法 `B` 明显优于算法 `C` 。对于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。 ## 函数渐近上界 给定一个输入大小为 $n$ 的函数: === "Python" ```python title="" def algorithm(n: int): a = 1 # +1 a = a + 1 # +1 a = a * 2 # +1 # 循环 n 次 for i in range(n): # +1 print(0) # +1 ``` === "C++" ```cpp title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) cout << 0 << endl; // +1 } } ``` === "Java" ```java title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) System.out.println(0); // +1 } } ``` === "C#" ```csharp title="" void Algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) Console.WriteLine(0); // +1 } } ``` === "Go" ```go title="" func algorithm(n int) { a := 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for i := 0; i < n; i++ { // +1 fmt.Println(a) // +1 } } ``` === "Swift" ```swift title="" func algorithm(n: Int) { var a = 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for _ in 0 ..< n { // +1 print(0) // +1 } } ``` === "JS" ```javascript title="" function algorithm(n) { var a = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) console.log(0); // +1 } } ``` === "TS" ```typescript title="" function algorithm(n: number): void{ var a: number = 1; // +1 a += 1; // +1 a *= 2; // +1 // 循环 n 次 for(let i = 0; i < n; i++){ // +1(每轮都执行 i ++) console.log(0); // +1 } } ``` === "Dart" ```dart title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) print(0); // +1 } } ``` === "Rust" ```rust title="" fn algorithm(n: i32) { let mut a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for _ in 0..n { // +1(每轮都执行 i ++) println!("{}", 0); // +1 } } ``` === "C" ```c title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) printf("%d", 0); // +1 } } ``` === "Kotlin" ```kotlin title="" fun algorithm(n: Int) { var a = 1 // +1 a = a + 1 // +1 a = a * 2 // +1 // 循环 n 次 for (i in 0..大 $O$ 记号(big-$O$ notation),表示函数 $T(n)$ 的渐近上界(asymptotic upper bound)。 时间复杂度分析本质上是计算“操作数量 $T(n)$”的渐近上界,它具有明确的数学定义。 !!! note "函数渐近上界" 若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为 $T(n) = O(f(n))$ 。 如下图所示,计算渐近上界就是寻找一个函数 $f(n)$ ,使得当 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别,仅相差一个常数项 $c$ 的倍数。 ![函数的渐近上界](time_complexity.assets/asymptotic_upper_bound.png) ## 推算方法 渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。我们可以先掌握推算方法,在不断的实践中,就可以逐渐领悟其数学意义。 根据定义,确定 $f(n)$ 之后,我们便可得到时间复杂度 $O(f(n))$ 。那么如何确定渐近上界 $f(n)$ 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。 ### 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以忽略**。根据此原则,可以总结出以下计数简化技巧。 1. **忽略 $T(n)$ 中的常数项**。因为它们都与 $n$ 无关,所以对时间复杂度不产生影响。 2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次等,都可以简化记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度没有影响。 3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 `1.` 点和第 `2.` 点的技巧。 给定一个函数,我们可以用上述技巧来统计操作数量: === "Python" ```python title="" def algorithm(n: int): a = 1 # +0(技巧 1) a = a + n # +0(技巧 1) # +n(技巧 2) for i in range(5 * n + 1): print(0) # +n*n(技巧 3) for i in range(2 * n): for j in range(n + 1): print(0) ``` === "C++" ```cpp title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { cout << 0 << endl; } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { cout << 0 << endl; } } } ``` === "Java" ```java title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { System.out.println(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } ``` === "C#" ```csharp title="" void Algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } ``` === "Go" ```go title="" func algorithm(n int) { a := 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for i := 0; i < 5 * n + 1; i++ { fmt.Println(0) } // +n*n(技巧 3) for i := 0; i < 2 * n; i++ { for j := 0; j < n + 1; j++ { fmt.Println(0) } } } ``` === "Swift" ```swift title="" func algorithm(n: Int) { var a = 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for _ in 0 ..< (5 * n + 1) { print(0) } // +n*n(技巧 3) for _ in 0 ..< (2 * n) { for _ in 0 ..< (n + 1) { print(0) } } } ``` === "JS" ```javascript title="" function algorithm(n) { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } ``` === "TS" ```typescript title="" function algorithm(n: number): void { let a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (let i = 0; i < 5 * n + 1; i++) { console.log(0); } // +n*n(技巧 3) for (let i = 0; i < 2 * n; i++) { for (let j = 0; j < n + 1; j++) { console.log(0); } } } ``` === "Dart" ```dart title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { print(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { print(0); } } } ``` === "Rust" ```rust title="" fn algorithm(n: i32) { let mut a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for i in 0..(5 * n + 1) { println!("{}", 0); } // +n*n(技巧 3) for i in 0..(2 * n) { for j in 0..(n + 1) { println!("{}", 0); } } } ``` === "C" ```c title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { printf("%d", 0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { printf("%d", 0); } } } ``` === "Kotlin" ```kotlin title="" fun algorithm(n: Int) { var a = 1 // +0(技巧 1) a = a + n // +0(技巧 1) // +n(技巧 2) for (i in 0..<5 * n + 1) { println(0) } // +n*n(技巧 3) for (i in 0..<2 * n) { for (j in 0..   不同操作数量对应的时间复杂度

| 操作数量 $T(n)$ | 时间复杂度 $O(f(n))$ | | ---------------------- | -------------------- | | $100000$ | $O(1)$ | | $3n + 2$ | $O(n)$ | | $2n^2 + 3n + 2$ | $O(n^2)$ | | $n^3 + 10000n^2$ | $O(n^3)$ | | $2^n + 10000n^{10000}$ | $O(2^n)$ | ## 常见类型 设输入数据大小为 $n$ ,常见的时间复杂度类型如下图所示(按照从低到高的顺序排列)。 $$ \begin{aligned} O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline \text{常数阶} < \text{对数阶} < \text{线性阶} < \text{线性对数阶} < \text{平方阶} < \text{指数阶} < \text{阶乘阶} \end{aligned} $$ ![常见的时间复杂度类型](time_complexity.assets/time_complexity_common_types.png) ### 常数阶 $O(1)$ 常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。 在以下函数中,尽管操作数量 `size` 可能很大,但由于其与输入数据大小 $n$ 无关,因此时间复杂度仍为 $O(1)$ : ```src [file]{time_complexity}-[class]{}-[func]{constant} ``` ### 线性阶 $O(n)$ 线性阶的操作数量相对于输入数据大小 $n$ 以线性级别增长。线性阶通常出现在单层循环中: ```src [file]{time_complexity}-[class]{}-[func]{linear} ``` 遍历数组和遍历链表等操作的时间复杂度均为 $O(n)$ ,其中 $n$ 为数组或链表的长度: ```src [file]{time_complexity}-[class]{}-[func]{array_traversal} ``` 值得注意的是,**输入数据大小 $n$ 需根据输入数据的类型来具体确定**。比如在第一个示例中,变量 $n$ 为输入数据大小;在第二个示例中,数组长度 $n$ 为数据大小。 ### 平方阶 $O(n^2)$ 平方阶的操作数量相对于输入数据大小 $n$ 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 $O(n)$ ,因此总体的时间复杂度为 $O(n^2)$ : ```src [file]{time_complexity}-[class]{}-[func]{quadratic} ``` 下图对比了常数阶、线性阶和平方阶三种时间复杂度。 ![常数阶、线性阶和平方阶的时间复杂度](time_complexity.assets/time_complexity_constant_linear_quadratic.png) 以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1$、$n-2$、$\dots$、$2$、$1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ : ```src [file]{time_complexity}-[class]{}-[func]{bubble_sort} ``` ### 指数阶 $O(2^n)$ 生物学的“细胞分裂”是指数阶增长的典型例子:初始状态为 $1$ 个细胞,分裂一轮后变为 $2$ 个,分裂两轮后变为 $4$ 个,以此类推,分裂 $n$ 轮后有 $2^n$ 个细胞。 下图和以下代码模拟了细胞分裂的过程,时间复杂度为 $O(2^n)$ : ```src [file]{time_complexity}-[class]{}-[func]{exponential} ``` ![指数阶的时间复杂度](time_complexity.assets/time_complexity_exponential.png) 在实际算法中,指数阶常出现于递归函数中。例如在以下代码中,其递归地一分为二,经过 $n$ 次分裂后停止: ```src [file]{time_complexity}-[class]{}-[func]{exp_recur} ``` 指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心算法等来解决。 ### 对数阶 $O(\log n)$ 与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。 下图和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 $O(\log_2 n)$ ,简记为 $O(\log n)$ : ```src [file]{time_complexity}-[class]{}-[func]{logarithmic} ``` ![对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic.png) 与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一棵高度为 $\log_2 n$ 的递归树: ```src [file]{time_complexity}-[class]{}-[func]{log_recur} ``` 对数阶常出现于基于分治策略的算法中,体现了“一分为多”和“化繁为简”的算法思想。它增长缓慢,是仅次于常数阶的理想的时间复杂度。 !!! tip "$O(\log n)$ 的底数是多少?" 准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数、相等的时间复杂度: $$ O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n) $$ 也就是说,底数 $m$ 可以在不影响复杂度的前提下转换。因此我们通常会省略底数 $m$ ,将对数阶直接记为 $O(\log n)$ 。 ### 线性对数阶 $O(n \log n)$ 线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。相关代码如下: ```src [file]{time_complexity}-[class]{}-[func]{linear_log_recur} ``` 下图展示了线性对数阶的生成方式。二叉树的每一层的操作总数都为 $n$ ,树共有 $\log_2 n + 1$ 层,因此时间复杂度为 $O(n \log n)$ 。 ![线性对数阶的时间复杂度](time_complexity.assets/time_complexity_logarithmic_linear.png) 主流排序算法的时间复杂度通常为 $O(n \log n)$ ,例如快速排序、归并排序、堆排序等。 ### 阶乘阶 $O(n!)$ 阶乘阶对应数学上的“全排列”问题。给定 $n$ 个互不重复的元素,求其所有可能的排列方案,方案数量为: $$ n! = n \times (n - 1) \times (n - 2) \times \dots \times 2 \times 1 $$ 阶乘通常使用递归实现。如下图和以下代码所示,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,以此类推,直至第 $n$ 层时停止分裂: ```src [file]{time_complexity}-[class]{}-[func]{factorial_recur} ``` ![阶乘阶的时间复杂度](time_complexity.assets/time_complexity_factorial.png) 请注意,因为当 $n \geq 4$ 时恒有 $n! > 2^n$ ,所以阶乘阶比指数阶增长得更快,在 $n$ 较大时也是不可接受的。 ## 最差、最佳、平均时间复杂度 **算法的时间效率往往不是固定的,而是与输入数据的分布有关**。假设输入一个长度为 $n$ 的数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,每个数字只出现一次;但元素顺序是随机打乱的,任务目标是返回元素 $1$ 的索引。我们可以得出以下结论。 - 当 `nums = [?, ?, ..., 1]` ,即当末尾元素是 $1$ 时,需要完整遍历数组,**达到最差时间复杂度 $O(n)$** 。 - 当 `nums = [1, ?, ?, ...]` ,即当首个元素为 $1$ 时,无论数组多长都不需要继续遍历,**达到最佳时间复杂度 $\Omega(1)$** 。 “最差时间复杂度”对应函数渐近上界,使用大 $O$ 记号表示。相应地,“最佳时间复杂度”对应函数渐近下界,用 $\Omega$ 记号表示: ```src [file]{worst_best_time_complexity}-[class]{}-[func]{find_one} ``` 值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。**而最差时间复杂度更为实用,因为它给出了一个效率安全值**,让我们可以放心地使用算法。 从上述示例可以看出,最差时间复杂度和最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,**平均时间复杂度可以体现算法在随机输入数据下的运行效率**,用 $\Theta$ 记号来表示。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 $n / 2$ ,平均时间复杂度为 $\Theta(n / 2) = \Theta(n)$ 。 但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。 !!! question "为什么很少看到 $\Theta$ 符号?" 可能由于 $O$ 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。