/** * File: graph_dfs.c * Created Time: 2023-07-13 * Author: NI-SW (947743645@qq.com) */ #include "graph_adjacency_list.c" /* 哈希表 */ struct hashTable { unsigned int size; unsigned int *array; }; typedef struct hashTable hashTable; /* 初始化哈希表 */ hashTable *newHash(unsigned int size) { hashTable *h = (hashTable *)malloc(sizeof(hashTable)); h->array = (unsigned int *)malloc(sizeof(unsigned int) * size); memset(h->array, 0, sizeof(unsigned int) * size); h->size = size; return h; } /* 标记索引过的顶点 */ void hashMark(hashTable *h, int index) { h->array[index % h->size] = 1; } /* 查询顶点是否已被标记 */ int hashQuery(hashTable *h, int index) { // 若顶点已被标记,则返回 1 if (h->array[index % h->size] == 1) { return 1; } else { return 0; } } /* 释放哈希表内存 */ void freeHash(hashTable *h) { free(h->array); free(h); } /* 深度优先遍历 DFS 辅助函数 */ int resIndex = 0; void dfs(graphAdjList *graph, hashTable *visited, Vertex *vet, Vertex **res) { if (hashQuery(visited, vet->pos) == 1) { return; // 跳过已被访问过的顶点 } hashMark(visited, vet->pos); // 标记顶点并将顶点存入数组 res[resIndex] = vet; // 将顶点存入数组 resIndex++; // 遍历该顶点链表 Node *n = vet->linked->head->next; while (n != 0) { // 递归访问邻接顶点 dfs(graph, visited, n->val, res); n = n->next; } return; } /* 深度优先遍历 DFS */ // 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点 Vertex **graphDFS(graphAdjList *graph, Vertex *startVet) { // 顶点遍历序列 Vertex **res = (Vertex **)malloc(sizeof(Vertex *) * graph->size); memset(res, 0, sizeof(Vertex *) * graph->size); // 哈希表,用于记录已被访问过的顶点 hashTable *visited = newHash(graph->size); dfs(graph, visited, startVet, res); // 释放哈希表内存并将数组索引归零 freeHash(visited); resIndex = 0; // 返回遍历数组 return res; } /* Driver Code */ int main() { graphAdjList *graph = newGraphAdjList(10); for (int i = 0; i < 7; i++) { addVertex(graph, i); } addEdge(graph, 0, 1); addEdge(graph, 0, 3); addEdge(graph, 1, 2); addEdge(graph, 2, 5); addEdge(graph, 5, 4); addEdge(graph, 5, 6); printf("\n初始化后,图为:\n"); printGraph(graph); // 深度优先遍历 DFS Vertex **vet = graphDFS(graph, graph->verticesList[0]); // 输出遍历结果 printf("\n深度优先遍历(DFS)顶点序列为\n"); printf("["); printf("%d", vet[0]->val); for (int i = 1; i < graph->size && vet[i] != 0; i++) { printf(", %d", vet[i]->val); } printf("]\n"); // 释放内存 free(vet); return 0; }