// File: my_heap.zig // Created Time: 2023-01-14 // Author: sjinzh (sjinzh@gmail.com) const std = @import("std"); const inc = @import("include"); // 堆类简易实现 pub fn MaxHeap(comptime T: type) type { return struct { const Self = @This(); max_heap: ?std.ArrayList(T) = null, // 使用列表而非数组,这样无须考虑扩容问题 // 构造方法,根据输入列表建堆 pub fn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void { if (self.max_heap != null) return; self.max_heap = std.ArrayList(T).init(allocator); // 将列表元素原封不动添加进堆 try self.max_heap.?.appendSlice(nums); // 堆化除叶节点以外的其他所有节点 var i: usize = parent(self.size() - 1) + 1; while (i > 0) : (i -= 1) { try self.siftDown(i - 1); } } // 析构方法,释放内存 pub fn deinit(self: *Self) void { if (self.max_heap != null) self.max_heap.?.deinit(); } // 获取左子节点的索引 fn left(i: usize) usize { return 2 * i + 1; } // 获取右子节点的索引 fn right(i: usize) usize { return 2 * i + 2; } // 获取父节点的索引 fn parent(i: usize) usize { // return (i - 1) / 2; // 向下整除 return @divFloor(i - 1, 2); } // 交换元素 fn swap(self: *Self, i: usize, j: usize) !void { var tmp = self.max_heap.?.items[i]; try self.max_heap.?.replaceRange(i, 1, &[_]T{self.max_heap.?.items[j]}); try self.max_heap.?.replaceRange(j, 1, &[_]T{tmp}); } // 获取堆大小 pub fn size(self: *Self) usize { return self.max_heap.?.items.len; } // 判断堆是否为空 pub fn isEmpty(self: *Self) bool { return self.size() == 0; } // 访问堆顶元素 pub fn peek(self: *Self) T { return self.max_heap.?.items[0]; } // 元素入堆 pub fn push(self: *Self, val: T) !void { // 添加节点 try self.max_heap.?.append(val); // 从底至顶堆化 try self.siftUp(self.size() - 1); } // 从节点 i 开始,从底至顶堆化 fn siftUp(self: *Self, i_: usize) !void { var i = i_; while (true) { // 获取节点 i 的父节点 var p = parent(i); // 当“越过根节点”或“节点无须修复”时,结束堆化 if (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break; // 交换两节点 try self.swap(i, p); // 循环向上堆化 i = p; } } // 元素出堆 pub fn pop(self: *Self) !T { // 判断处理 if (self.isEmpty()) unreachable; // 交换根节点与最右叶节点(交换首元素与尾元素) try self.swap(0, self.size() - 1); // 删除节点 var val = self.max_heap.?.pop(); // 从顶至底堆化 try self.siftDown(0); // 返回堆顶元素 return val; } // 从节点 i 开始,从顶至底堆化 fn siftDown(self: *Self, i_: usize) !void { var i = i_; while (true) { // 判断节点 i, l, r 中值最大的节点,记为 ma var l = left(i); var r = right(i); var ma = i; if (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l; if (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r; // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出 if (ma == i) break; // 交换两节点 try self.swap(i, ma); // 循环向下堆化 i = ma; } } fn lessThan(context: void, a: T, b: T) std.math.Order { _ = context; return std.math.order(a, b); } fn greaterThan(context: void, a: T, b: T) std.math.Order { return lessThan(context, a, b).invert(); } // 打印堆(二叉树) pub fn print(self: *Self, mem_allocator: std.mem.Allocator) !void { const PQgt = std.PriorityQueue(T, void, greaterThan); var queue = PQgt.init(std.heap.page_allocator, {}); defer queue.deinit(); try queue.addSlice(self.max_heap.?.items); try inc.PrintUtil.printHeap(T, mem_allocator, queue); } }; } // Driver Code pub fn main() !void { // 初始化内存分配器 var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator); defer mem_arena.deinit(); const mem_allocator = mem_arena.allocator(); // 初始化大顶堆 var max_heap = MaxHeap(i32){}; try max_heap.init(std.heap.page_allocator, &[_]i32{ 9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2 }); defer max_heap.deinit(); std.debug.print("\n输入列表并建堆后\n", .{}); try max_heap.print(mem_allocator); // 获取堆顶元素 var peek = max_heap.peek(); std.debug.print("\n堆顶元素为 {}\n", .{peek}); // 元素入堆 const val = 7; try max_heap.push(val); std.debug.print("\n元素 {} 入堆后\n", .{val}); try max_heap.print(mem_allocator); // 堆顶元素出堆 peek = try max_heap.pop(); std.debug.print("\n堆顶元素 {} 出堆后\n", .{peek}); try max_heap.print(mem_allocator); // 获取堆的大小 var size = max_heap.size(); std.debug.print("\n堆元素数量为 {}", .{size}); // 判断堆是否为空 var is_empty = max_heap.isEmpty(); std.debug.print("\n堆是否为空 {}\n", .{is_empty}); _ = try std.io.getStdIn().reader().readByte(); }