--- comments: true --- # 8.2.   二叉树遍历 从物理结构的角度来看,树是一种基于链表的数据结构,因此其遍历方式是通过指针逐个访问节点。然而,树是一种非线性数据结构,这使得遍历树比遍历链表更加复杂,需要借助搜索算法来实现。 二叉树常见的遍历方式包括层序遍历、前序遍历、中序遍历和后序遍历等。 ## 8.2.1.   层序遍历 「层序遍历 Level-Order Traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。 层序遍历本质上属于「广度优先搜索 Breadth-First Traversal」,它体现了一种“一圈一圈向外扩展”的逐层搜索方式。 ![二叉树的层序遍历](binary_tree_traversal.assets/binary_tree_bfs.png)

Fig. 二叉树的层序遍历

### 算法实现 广度优先遍历通常借助「队列」来实现。队列遵循“先进先出”的规则,而广度优先遍历则遵循“逐层推进”的规则,两者背后的思想是一致的。 === "Java" ```java title="binary_tree_bfs.java" /* 层序遍历 */ List levelOrder(TreeNode root) { // 初始化队列,加入根节点 Queue queue = new LinkedList<>() {{ add(root); }}; // 初始化一个列表,用于保存遍历序列 List list = new ArrayList<>(); while (!queue.isEmpty()) { TreeNode node = queue.poll(); // 队列出队 list.add(node.val); // 保存节点值 if (node.left != null) queue.offer(node.left); // 左子节点入队 if (node.right != null) queue.offer(node.right); // 右子节点入队 } return list; } ``` === "C++" ```cpp title="binary_tree_bfs.cpp" /* 层序遍历 */ vector levelOrder(TreeNode *root) { // 初始化队列,加入根节点 queue queue; queue.push(root); // 初始化一个列表,用于保存遍历序列 vector vec; while (!queue.empty()) { TreeNode *node = queue.front(); queue.pop(); // 队列出队 vec.push_back(node->val); // 保存节点值 if (node->left != nullptr) queue.push(node->left); // 左子节点入队 if (node->right != nullptr) queue.push(node->right); // 右子节点入队 } return vec; } ``` === "Python" ```python title="binary_tree_bfs.py" def level_order(root: TreeNode | None) -> list[int]: """层序遍历""" # 初始化队列,加入根节点 queue: deque[TreeNode] = deque() queue.append(root) # 初始化一个列表,用于保存遍历序列 res: list[int] = [] while queue: node: TreeNode = queue.popleft() # 队列出队 res.append(node.val) # 保存节点值 if node.left is not None: queue.append(node.left) # 左子节点入队 if node.right is not None: queue.append(node.right) # 右子节点入队 return res ``` === "Go" ```go title="binary_tree_bfs.go" /* 层序遍历 */ func levelOrder(root *TreeNode) []int { // 初始化队列,加入根节点 queue := list.New() queue.PushBack(root) // 初始化一个切片,用于保存遍历序列 nums := make([]int, 0) for queue.Len() > 0 { // 队列出队 node := queue.Remove(queue.Front()).(*TreeNode) // 保存节点值 nums = append(nums, node.Val) if node.Left != nil { // 左子节点入队 queue.PushBack(node.Left) } if node.Right != nil { // 右子节点入队 queue.PushBack(node.Right) } } return nums } ``` === "JavaScript" ```javascript title="binary_tree_bfs.js" /* 层序遍历 */ function levelOrder(root) { // 初始化队列,加入根节点 const queue = [root]; // 初始化一个列表,用于保存遍历序列 const list = []; while (queue.length) { let node = queue.shift(); // 队列出队 list.push(node.val); // 保存节点值 if (node.left) queue.push(node.left); // 左子节点入队 if (node.right) queue.push(node.right); // 右子节点入队 } return list; } ``` === "TypeScript" ```typescript title="binary_tree_bfs.ts" /* 层序遍历 */ function levelOrder(root: TreeNode | null): number[] { // 初始化队列,加入根节点 const queue = [root]; // 初始化一个列表,用于保存遍历序列 const list: number[] = []; while (queue.length) { let node = queue.shift() as TreeNode; // 队列出队 list.push(node.val); // 保存节点值 if (node.left) { queue.push(node.left); // 左子节点入队 } if (node.right) { queue.push(node.right); // 右子节点入队 } } return list; } ``` === "C" ```c title="binary_tree_bfs.c" /* 层序遍历 */ int *levelOrder(TreeNode *root, int *size) { /* 辅助队列 */ int front, rear; int index, *arr; TreeNode *node; TreeNode **queue; /* 辅助队列 */ queue = (TreeNode **)malloc(sizeof(TreeNode *) * MAX_NODE_SIZE); // 队列指针 front = 0, rear = 0; // 加入根节点 queue[rear++] = root; // 初始化一个列表,用于保存遍历序列 /* 辅助数组 */ arr = (int *)malloc(sizeof(int) * MAX_NODE_SIZE); // 数组指针 index = 0; while (front < rear) { // 队列出队 node = queue[front++]; // 保存节点值 arr[index++] = node->val; if (node->left != NULL) { // 左子节点入队 queue[rear++] = node->left; } if (node->right != NULL) { // 右子节点入队 queue[rear++] = node->right; } } // 更新数组长度的值 *size = index; arr = realloc(arr, sizeof(int) * (*size)); // 释放辅助数组空间 free(queue); return arr; } ``` === "C#" ```csharp title="binary_tree_bfs.cs" /* 层序遍历 */ List levelOrder(TreeNode root) { // 初始化队列,加入根节点 Queue queue = new(); queue.Enqueue(root); // 初始化一个列表,用于保存遍历序列 List list = new(); while (queue.Count != 0) { TreeNode node = queue.Dequeue(); // 队列出队 list.Add(node.val); // 保存节点值 if (node.left != null) queue.Enqueue(node.left); // 左子节点入队 if (node.right != null) queue.Enqueue(node.right); // 右子节点入队 } return list; } ``` === "Swift" ```swift title="binary_tree_bfs.swift" /* 层序遍历 */ func levelOrder(root: TreeNode) -> [Int] { // 初始化队列,加入根节点 var queue: [TreeNode] = [root] // 初始化一个列表,用于保存遍历序列 var list: [Int] = [] while !queue.isEmpty { let node = queue.removeFirst() // 队列出队 list.append(node.val) // 保存节点值 if let left = node.left { queue.append(left) // 左子节点入队 } if let right = node.right { queue.append(right) // 右子节点入队 } } return list } ``` === "Zig" ```zig title="binary_tree_bfs.zig" // 层序遍历 fn levelOrder(comptime T: type, mem_allocator: std.mem.Allocator, root: *inc.TreeNode(T)) !std.ArrayList(T) { // 初始化队列,加入根节点 const L = std.TailQueue(*inc.TreeNode(T)); var queue = L{}; var root_node = try mem_allocator.create(L.Node); root_node.data = root; queue.append(root_node); // 初始化一个列表,用于保存遍历序列 var list = std.ArrayList(T).init(std.heap.page_allocator); while (queue.len > 0) { var queue_node = queue.popFirst().?; // 队列出队 var node = queue_node.data; try list.append(node.val); // 保存节点值 if (node.left != null) { var tmp_node = try mem_allocator.create(L.Node); tmp_node.data = node.left.?; queue.append(tmp_node); // 左子节点入队 } if (node.right != null) { var tmp_node = try mem_allocator.create(L.Node); tmp_node.data = node.right.?; queue.append(tmp_node); // 右子节点入队 } } return list; } ``` ### 复杂度分析 **时间复杂度**:所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。 **空间复杂度**:在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 $\frac{n + 1}{2}$ 个节点,占用 $O(n)$ 空间。 ## 8.2.2.   前序、中序、后序遍历 相应地,前序、中序和后序遍历都属于「深度优先遍历 Depth-First Traversal」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。 如下图所示,左侧是深度优先遍历的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,在这个过程中,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。 ![二叉搜索树的前、中、后序遍历](binary_tree_traversal.assets/binary_tree_dfs.png)

Fig. 二叉搜索树的前、中、后序遍历

| 位置 | 含义 | 此处访问节点时对应 | | ---------- | ------------------------------------ | ----------------------------- | | 橙色圆圈处 | 刚进入此节点,即将访问该节点的左子树 | 前序遍历 Pre-Order Traversal | | 蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal | | 紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
### 算法实现 === "Java" ```java title="binary_tree_dfs.java" /* 前序遍历 */ void preOrder(TreeNode root) { if (root == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.add(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ void inOrder(TreeNode root) { if (root == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.add(root.val); inOrder(root.right); } /* 后序遍历 */ void postOrder(TreeNode root) { if (root == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.add(root.val); } ``` === "C++" ```cpp title="binary_tree_dfs.cpp" /* 前序遍历 */ void preOrder(TreeNode *root) { if (root == nullptr) return; // 访问优先级:根节点 -> 左子树 -> 右子树 vec.push_back(root->val); preOrder(root->left); preOrder(root->right); } /* 中序遍历 */ void inOrder(TreeNode *root) { if (root == nullptr) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root->left); vec.push_back(root->val); inOrder(root->right); } /* 后序遍历 */ void postOrder(TreeNode *root) { if (root == nullptr) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root->left); postOrder(root->right); vec.push_back(root->val); } ``` === "Python" ```python title="binary_tree_dfs.py" def pre_order(root: TreeNode | None) -> None: """前序遍历""" if root is None: return # 访问优先级:根节点 -> 左子树 -> 右子树 res.append(root.val) pre_order(root=root.left) pre_order(root=root.right) def in_order(root: TreeNode | None) -> None: """中序遍历""" if root is None: return # 访问优先级:左子树 -> 根节点 -> 右子树 in_order(root=root.left) res.append(root.val) in_order(root=root.right) def post_order(root: TreeNode | None) -> None: """后序遍历""" if root is None: return # 访问优先级:左子树 -> 右子树 -> 根节点 post_order(root=root.left) post_order(root=root.right) res.append(root.val) ``` === "Go" ```go title="binary_tree_dfs.go" /* 前序遍历 */ func preOrder(node *TreeNode) { if node == nil { return } // 访问优先级:根节点 -> 左子树 -> 右子树 nums = append(nums, node.Val) preOrder(node.Left) preOrder(node.Right) } /* 中序遍历 */ func inOrder(node *TreeNode) { if node == nil { return } // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(node.Left) nums = append(nums, node.Val) inOrder(node.Right) } /* 后序遍历 */ func postOrder(node *TreeNode) { if node == nil { return } // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(node.Left) postOrder(node.Right) nums = append(nums, node.Val) } ``` === "JavaScript" ```javascript title="binary_tree_dfs.js" /* 前序遍历 */ function preOrder(root) { if (root === null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.push(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ function inOrder(root) { if (root === null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.push(root.val); inOrder(root.right); } /* 后序遍历 */ function postOrder(root) { if (root === null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.push(root.val); } ``` === "TypeScript" ```typescript title="binary_tree_dfs.ts" /* 前序遍历 */ function preOrder(root: TreeNode | null): void { if (root === null) { return; } // 访问优先级:根节点 -> 左子树 -> 右子树 list.push(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ function inOrder(root: TreeNode | null): void { if (root === null) { return; } // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.push(root.val); inOrder(root.right); } /* 后序遍历 */ function postOrder(root: TreeNode | null): void { if (root === null) { return; } // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.push(root.val); } ``` === "C" ```c title="binary_tree_dfs.c" /* 前序遍历 */ void preOrder(TreeNode *root, int *size) { if (root == NULL) return; // 访问优先级:根节点 -> 左子树 -> 右子树 arr[(*size)++] = root->val; preOrder(root->left, size); preOrder(root->right, size); } /* 中序遍历 */ void inOrder(TreeNode *root, int *size) { if (root == NULL) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root->left, size); arr[(*size)++] = root->val; inOrder(root->right, size); } /* 后序遍历 */ void postOrder(TreeNode *root, int *size) { if (root == NULL) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root->left, size); postOrder(root->right, size); arr[(*size)++] = root->val; } ``` === "C#" ```csharp title="binary_tree_dfs.cs" /* 前序遍历 */ void preOrder(TreeNode? root) { if (root == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 list.Add(root.val); preOrder(root.left); preOrder(root.right); } /* 中序遍历 */ void inOrder(TreeNode? root) { if (root == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root.left); list.Add(root.val); inOrder(root.right); } /* 后序遍历 */ void postOrder(TreeNode? root) { if (root == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root.left); postOrder(root.right); list.Add(root.val); } ``` === "Swift" ```swift title="binary_tree_dfs.swift" /* 前序遍历 */ func preOrder(root: TreeNode?) { guard let root = root else { return } // 访问优先级:根节点 -> 左子树 -> 右子树 list.append(root.val) preOrder(root: root.left) preOrder(root: root.right) } /* 中序遍历 */ func inOrder(root: TreeNode?) { guard let root = root else { return } // 访问优先级:左子树 -> 根节点 -> 右子树 inOrder(root: root.left) list.append(root.val) inOrder(root: root.right) } /* 后序遍历 */ func postOrder(root: TreeNode?) { guard let root = root else { return } // 访问优先级:左子树 -> 右子树 -> 根节点 postOrder(root: root.left) postOrder(root: root.right) list.append(root.val) } ``` === "Zig" ```zig title="binary_tree_dfs.zig" // 前序遍历 fn preOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void { if (root == null) return; // 访问优先级:根节点 -> 左子树 -> 右子树 try list.append(root.?.val); try preOrder(T, root.?.left); try preOrder(T, root.?.right); } // 中序遍历 fn inOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void { if (root == null) return; // 访问优先级:左子树 -> 根节点 -> 右子树 try inOrder(T, root.?.left); try list.append(root.?.val); try inOrder(T, root.?.right); } // 后序遍历 fn postOrder(comptime T: type, root: ?*inc.TreeNode(T)) !void { if (root == null) return; // 访问优先级:左子树 -> 右子树 -> 根节点 try postOrder(T, root.?.left); try postOrder(T, root.?.right); try list.append(root.?.val); } ``` !!! note 我们也可以仅基于循环实现前、中、后序遍历,有兴趣的同学可以自行实现。 递归过程可分为“递”和“归”两个相反的部分。“递”表示开启新方法,程序在此过程中访问下一个节点;“归”表示函数返回,代表该节点已经访问完毕。如下图所示,为前序遍历二叉树的递归过程。 === "<1>" ![前序遍历的递归过程](binary_tree_traversal.assets/preorder_step1.png) === "<2>" ![preorder_step2](binary_tree_traversal.assets/preorder_step2.png) === "<3>" ![preorder_step3](binary_tree_traversal.assets/preorder_step3.png) === "<4>" ![preorder_step4](binary_tree_traversal.assets/preorder_step4.png) === "<5>" ![preorder_step5](binary_tree_traversal.assets/preorder_step5.png) === "<6>" ![preorder_step6](binary_tree_traversal.assets/preorder_step6.png) === "<7>" ![preorder_step7](binary_tree_traversal.assets/preorder_step7.png) === "<8>" ![preorder_step8](binary_tree_traversal.assets/preorder_step8.png) === "<9>" ![preorder_step9](binary_tree_traversal.assets/preorder_step9.png) === "<10>" ![preorder_step10](binary_tree_traversal.assets/preorder_step10.png) === "<11>" ![preorder_step11](binary_tree_traversal.assets/preorder_step11.png) ### 复杂度分析 **时间复杂度**:所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。 **空间复杂度**:在最差情况下,即树退化为链表时,递归深度达到 $n$ ,系统占用 $O(n)$ 栈帧空间。