""" File: subset_sum_i.py Created Time: 2023-06-17 Author: krahets (krahets@163.com) """ def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """Backtracking algorithm: Subset Sum I""" # When the subset sum equals target, record the solution if target == 0: res.append(list(state)) return # Traverse all choices # Pruning two: start traversing from start to avoid generating duplicate subsets for i in range(start, len(choices)): # Pruning one: if the subset sum exceeds target, end the loop immediately # This is because the array is sorted, and later elements are larger, so the subset sum will definitely exceed target if target - choices[i] < 0: break # Attempt: make a choice, update target, start state.append(choices[i]) # Proceed to the next round of selection backtrack(state, target - choices[i], choices, i, res) # Retract: undo the choice, restore to the previous state state.pop() def subset_sum_i(nums: list[int], target: int) -> list[list[int]]: """Solve Subset Sum I""" state = [] # State (subset) nums.sort() # Sort nums start = 0 # Start point for traversal res = [] # Result list (subset list) backtrack(state, target, nums, start, res) return res """Driver Code""" if __name__ == "__main__": nums = [3, 4, 5] target = 9 res = subset_sum_i(nums, target) print(f"Input array nums = {nums}, target = {target}") print(f"All subsets equal to {target} res = {res}")