""" File: heap.py Created Time: 2023-02-23 Author: Krahets (krahets@163.com) """ import sys, os.path as osp sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__)))) from modules import * import heapq def test_push(heap: list, val: int, flag: int = 1) -> None: heapq.heappush(heap, flag * val) # 元素入堆 print(f"\n元素 {val} 入堆后") print_heap([flag * val for val in heap]) def test_pop(heap: list, flag: int = 1) -> None: val = flag * heapq.heappop(heap) # 堆顶元素出堆 print(f"\n堆顶元素 {val} 出堆后") print_heap([flag * val for val in heap]) """ Driver Code """ if __name__ == "__main__": # 初始化小顶堆 min_heap, flag = [], 1 # 初始化大顶堆 max_heap, flag = [], -1 print("\n以下测试样例为大顶堆") # Python 的 heapq 模块默认实现小顶堆 # 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆 # 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆 """ 元素入堆 """ test_push(max_heap, 1, flag) test_push(max_heap, 3, flag) test_push(max_heap, 2, flag) test_push(max_heap, 5, flag) test_push(max_heap, 4, flag) """ 获取堆顶元素 """ peek: int = flag * max_heap[0] print(f"\n堆顶元素为 {peek}") """ 堆顶元素出堆 """ test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) test_pop(max_heap, flag) """ 获取堆大小 """ size: int = len(max_heap) print(f"\n堆元素数量为 {size}") """ 判断堆是否为空 """ is_empty: bool = not max_heap print(f"\n堆是否为空 {is_empty}") """ 输入列表并建堆 """ # 时间复杂度为 O(n) ,而非 O(nlogn) min_heap: list[int] = [1, 3, 2, 5, 4] heapq.heapify(min_heap) print("\n输入列表并建立小顶堆后") print_heap(min_heap)