--- comments: true --- # 7.4.   AVL 树 * 在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。 如下图所示,执行两步删除节点后,该二叉搜索树就会退化为链表。 ![AVL 树在删除节点后发生退化](avl_tree.assets/avltree_degradation_from_removing_node.png)

Fig. AVL 树在删除节点后发生退化

再比如,在以下完美二叉树中插入两个节点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。 ![AVL 树在插入节点后发生退化](avl_tree.assets/avltree_degradation_from_inserting_node.png)

Fig. AVL 树在插入节点后发生退化

G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。**论文中描述了一系列操作,使得在不断添加与删除节点后,AVL 树仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。 换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。 ## 7.4.1.   AVL 树常见术语 「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。 ### 节点高度 在 AVL 树的操作中,需要获取节点「高度 Height」,所以给 AVL 树的节点类添加 `height` 变量。 === "Java" ```java title="" /* AVL 树节点类 */ class TreeNode { public int val; // 节点值 public int height; // 节点高度 public TreeNode left; // 左子节点 public TreeNode right; // 右子节点 public TreeNode(int x) { val = x; } } ``` === "C++" ```cpp title="" /* AVL 树节点类 */ struct TreeNode { int val{}; // 节点值 int height = 0; // 节点高度 TreeNode *left{}; // 左子节点 TreeNode *right{}; // 右子节点 TreeNode() = default; explicit TreeNode(int x) : val(x){} }; ``` === "Python" ```python title="" class TreeNode: """AVL 树节点类""" def __init__(self, val: int): self.val: int = val # 节点值 self.height: int = 0 # 节点高度 self.left: Optional[TreeNode] = None # 左子节点引用 self.right: Optional[TreeNode] = None # 右子节点引用 ``` === "Go" ```go title="" /* AVL 树节点类 */ type TreeNode struct { Val int // 节点值 Height int // 节点高度 Left *TreeNode // 左子节点引用 Right *TreeNode // 右子节点引用 } ``` === "JavaScript" ```javascript title="" class TreeNode { val; // 节点值 height; //节点高度 left; // 左子节点指针 right; // 右子节点指针 constructor(val, left, right, height) { this.val = val === undefined ? 0 : val; this.height = height === undefined ? 0 : height; this.left = left === undefined ? null : left; this.right = right === undefined ? null : right; } } ``` === "TypeScript" ```typescript title="" class TreeNode { val: number; // 节点值 height: number; // 节点高度 left: TreeNode | null; // 左子节点指针 right: TreeNode | null; // 右子节点指针 constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) { this.val = val === undefined ? 0 : val; this.height = height === undefined ? 0 : height; this.left = left === undefined ? null : left; this.right = right === undefined ? null : right; } } ``` === "C" ```c title="" ``` === "C#" ```csharp title="" /* AVL 树节点类 */ class TreeNode { public int val; // 节点值 public int height; // 节点高度 public TreeNode? left; // 左子节点 public TreeNode? right; // 右子节点 public TreeNode(int x) { val = x; } } ``` === "Swift" ```swift title="" /* AVL 树节点类 */ class TreeNode { var val: Int // 节点值 var height: Int // 节点高度 var left: TreeNode? // 左子节点 var right: TreeNode? // 右子节点 init(x: Int) { val = x height = 0 } } ``` === "Zig" ```zig title="" ``` 「节点高度」是最远叶节点到该节点的距离,即走过的「边」的数量。需要特别注意,**叶节点的高度为 0 ,空节点的高度为 -1**。我们封装两个工具函数,分别用于获取与更新节点的高度。 === "Java" ```java title="avl_tree.java" /* 获取节点高度 */ int height(TreeNode node) { // 空节点高度为 -1 ,叶节点高度为 0 return node == null ? -1 : node.height; } /* 更新节点高度 */ void updateHeight(TreeNode node) { // 节点高度等于最高子树高度 + 1 node.height = Math.max(height(node.left), height(node.right)) + 1; } ``` === "C++" ```cpp title="avl_tree.cpp" /* 获取节点高度 */ int height(TreeNode* node) { // 空节点高度为 -1 ,叶节点高度为 0 return node == nullptr ? -1 : node->height; } /* 更新节点高度 */ void updateHeight(TreeNode* node) { // 节点高度等于最高子树高度 + 1 node->height = max(height(node->left), height(node->right)) + 1; } ``` === "Python" ```python title="avl_tree.py" def height(self, node: TreeNode | None) -> int: """获取节点高度""" # 空节点高度为 -1 ,叶节点高度为 0 if node is not None: return node.height return -1 def __update_height(self, node: TreeNode | None): """更新节点高度""" # 节点高度等于最高子树高度 + 1 node.height = max([self.height(node.left), self.height(node.right)]) + 1 ``` === "Go" ```go title="avl_tree.go" /* 获取节点高度 */ func (t *aVLTree) height(node *TreeNode) int { // 空节点高度为 -1 ,叶节点高度为 0 if node != nil { return node.Height } return -1 } /* 更新节点高度 */ func (t *aVLTree) updateHeight(node *TreeNode) { lh := t.height(node.Left) rh := t.height(node.Right) // 节点高度等于最高子树高度 + 1 if lh > rh { node.Height = lh + 1 } else { node.Height = rh + 1 } } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 获取节点高度 */ height(node) { // 空节点高度为 -1 ,叶节点高度为 0 return node === null ? -1 : node.height; } /* 更新节点高度 */ #updateHeight(node) { // 节点高度等于最高子树高度 + 1 node.height = Math.max(this.height(node.left), this.height(node.right)) + 1; } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 获取节点高度 */ height(node: TreeNode): number { // 空节点高度为 -1 ,叶节点高度为 0 return node === null ? -1 : node.height; } /* 更新节点高度 */ updateHeight(node: TreeNode): void { // 节点高度等于最高子树高度 + 1 node.height = Math.max(this.height(node.left), this.height(node.right)) + 1; } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{height} [class]{aVLTree}-[func]{updateHeight} ``` === "C#" ```csharp title="avl_tree.cs" /* 获取节点高度 */ int height(TreeNode? node) { // 空节点高度为 -1 ,叶节点高度为 0 return node == null ? -1 : node.height; } /* 更新节点高度 */ void updateHeight(TreeNode node) { // 节点高度等于最高子树高度 + 1 node.height = Math.Max(height(node.left), height(node.right)) + 1; } ``` === "Swift" ```swift title="avl_tree.swift" /* 获取节点高度 */ func height(node: TreeNode?) -> Int { // 空节点高度为 -1 ,叶节点高度为 0 node == nil ? -1 : node!.height } /* 更新节点高度 */ func updateHeight(node: TreeNode?) { // 节点高度等于最高子树高度 + 1 node?.height = max(height(node: node?.left), height(node: node?.right)) + 1 } ``` === "Zig" ```zig title="avl_tree.zig" // 获取节点高度 fn height(self: *Self, node: ?*inc.TreeNode(T)) i32 { _ = self; // 空节点高度为 -1 ,叶节点高度为 0 return if (node == null) -1 else node.?.height; } // 更新节点高度 fn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void { // 节点高度等于最高子树高度 + 1 node.?.height = std.math.max(self.height(node.?.left), self.height(node.?.right)) + 1; } ``` ### 节点平衡因子 节点的「平衡因子 Balance Factor」是 **节点的左子树高度减去右子树高度**,并定义空节点的平衡因子为 0 。同样地,我们将获取节点平衡因子封装成函数,以便后续使用。 === "Java" ```java title="avl_tree.java" /* 获取平衡因子 */ int balanceFactor(TreeNode node) { // 空节点平衡因子为 0 if (node == null) return 0; // 节点平衡因子 = 左子树高度 - 右子树高度 return height(node.left) - height(node.right); } ``` === "C++" ```cpp title="avl_tree.cpp" /* 获取平衡因子 */ int balanceFactor(TreeNode* node) { // 空节点平衡因子为 0 if (node == nullptr) return 0; // 节点平衡因子 = 左子树高度 - 右子树高度 return height(node->left) - height(node->right); } ``` === "Python" ```python title="avl_tree.py" def balance_factor(self, node: TreeNode | None) -> int: """获取平衡因子""" # 空节点平衡因子为 0 if node is None: return 0 # 节点平衡因子 = 左子树高度 - 右子树高度 return self.height(node.left) - self.height(node.right) ``` === "Go" ```go title="avl_tree.go" /* 获取平衡因子 */ func (t *aVLTree) balanceFactor(node *TreeNode) int { // 空节点平衡因子为 0 if node == nil { return 0 } // 节点平衡因子 = 左子树高度 - 右子树高度 return t.height(node.Left) - t.height(node.Right) } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 获取平衡因子 */ balanceFactor(node) { // 空节点平衡因子为 0 if (node === null) return 0; // 节点平衡因子 = 左子树高度 - 右子树高度 return this.height(node.left) - this.height(node.right); } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 获取平衡因子 */ balanceFactor(node: TreeNode): number { // 空节点平衡因子为 0 if (node === null) return 0; // 节点平衡因子 = 左子树高度 - 右子树高度 return this.height(node.left) - this.height(node.right); } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{balanceFactor} ``` === "C#" ```csharp title="avl_tree.cs" /* 获取平衡因子 */ int balanceFactor(TreeNode? node) { // 空节点平衡因子为 0 if (node == null) return 0; // 节点平衡因子 = 左子树高度 - 右子树高度 return height(node.left) - height(node.right); } ``` === "Swift" ```swift title="avl_tree.swift" /* 获取平衡因子 */ func balanceFactor(node: TreeNode?) -> Int { // 空节点平衡因子为 0 guard let node = node else { return 0 } // 节点平衡因子 = 左子树高度 - 右子树高度 return height(node: node.left) - height(node: node.right) } ``` === "Zig" ```zig title="avl_tree.zig" // 获取平衡因子 fn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 { // 空节点平衡因子为 0 if (node == null) return 0; // 节点平衡因子 = 左子树高度 - 右子树高度 return self.height(node.?.left) - self.height(node.?.right); } ``` !!! note 设平衡因子为 $f$ ,则一棵 AVL 树的任意节点的平衡因子皆满足 $-1 \le f \le 1$ 。 ## 7.4.2.   AVL 树旋转 AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影响二叉树中序遍历序列的前提下,使失衡节点重新恢复平衡**。换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。 我们将平衡因子的绝对值 $> 1$ 的节点称为「失衡节点」。根据节点的失衡情况,旋转操作分为 **右旋、左旋、先右旋后左旋、先左旋后右旋**,接下来我们来一起来看看它们是如何操作的。 ### Case 1 - 右旋 如下图所示(节点下方为「平衡因子」),从底至顶看,二叉树中首个失衡节点是 **节点 3**。我们聚焦在以该失衡节点为根节点的子树上,将该节点记为 `node` ,将其左子节点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。 === "<1>" ![右旋操作步骤](avl_tree.assets/avltree_right_rotate_step1.png) === "<2>" ![avltree_right_rotate_step2](avl_tree.assets/avltree_right_rotate_step2.png) === "<3>" ![avltree_right_rotate_step3](avl_tree.assets/avltree_right_rotate_step3.png) === "<4>" ![avltree_right_rotate_step4](avl_tree.assets/avltree_right_rotate_step4.png) 进而,如果节点 `child` 本身有右子节点(记为 `grandChild` ),则需要在「右旋」中添加一步:将 `grandChild` 作为 `node` 的左子节点。 ![有 grandChild 的右旋操作](avl_tree.assets/avltree_right_rotate_with_grandchild.png)

Fig. 有 grandChild 的右旋操作

“向右旋转”是一种形象化的说法,实际需要通过修改节点指针实现,代码如下所示。 === "Java" ```java title="avl_tree.java" /* 右旋操作 */ TreeNode rightRotate(TreeNode node) { TreeNode child = node.left; TreeNode grandChild = child.right; // 以 child 为原点,将 node 向右旋转 child.right = node; node.left = grandChild; // 更新节点高度 updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "C++" ```cpp title="avl_tree.cpp" /* 右旋操作 */ TreeNode* rightRotate(TreeNode* node) { TreeNode* child = node->left; TreeNode* grandChild = child->right; // 以 child 为原点,将 node 向右旋转 child->right = node; node->left = grandChild; // 更新节点高度 updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "Python" ```python title="avl_tree.py" def __right_rotate(self, node: TreeNode | None) -> TreeNode | None: """右旋操作""" child = node.left grand_child = child.right # 以 child 为原点,将 node 向右旋转 child.right = node node.left = grand_child # 更新节点高度 self.__update_height(node) self.__update_height(child) # 返回旋转后子树的根节点 return child ``` === "Go" ```go title="avl_tree.go" /* 右旋操作 */ func (t *aVLTree) rightRotate(node *TreeNode) *TreeNode { child := node.Left grandChild := child.Right // 以 child 为原点,将 node 向右旋转 child.Right = node node.Left = grandChild // 更新节点高度 t.updateHeight(node) t.updateHeight(child) // 返回旋转后子树的根节点 return child } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 右旋操作 */ #rightRotate(node) { const child = node.left; const grandChild = child.right; // 以 child 为原点,将 node 向右旋转 child.right = node; node.left = grandChild; // 更新节点高度 this.#updateHeight(node); this.#updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 右旋操作 */ rightRotate(node: TreeNode): TreeNode { const child = node.left; const grandChild = child.right; // 以 child 为原点,将 node 向右旋转 child.right = node; node.left = grandChild; // 更新节点高度 this.updateHeight(node); this.updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{rightRotate} ``` === "C#" ```csharp title="avl_tree.cs" /* 右旋操作 */ TreeNode? rightRotate(TreeNode? node) { TreeNode? child = node.left; TreeNode? grandChild = child?.right; // 以 child 为原点,将 node 向右旋转 child.right = node; node.left = grandChild; // 更新节点高度 updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "Swift" ```swift title="avl_tree.swift" /* 右旋操作 */ func rightRotate(node: TreeNode?) -> TreeNode? { let child = node?.left let grandChild = child?.right // 以 child 为原点,将 node 向右旋转 child?.right = node node?.left = grandChild // 更新节点高度 updateHeight(node: node) updateHeight(node: child) // 返回旋转后子树的根节点 return child } ``` === "Zig" ```zig title="avl_tree.zig" // 右旋操作 fn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) { var child = node.?.left; var grandChild = child.?.right; // 以 child 为原点,将 node 向右旋转 child.?.right = node; node.?.left = grandChild; // 更新节点高度 self.updateHeight(node); self.updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` ### Case 2 - 左旋 类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。 ![左旋操作](avl_tree.assets/avltree_left_rotate.png)

Fig. 左旋操作

同理,若节点 `child` 本身有左子节点(记为 `grandChild` ),则需要在「左旋」中添加一步:将 `grandChild` 作为 `node` 的右子节点。 ![有 grandChild 的左旋操作](avl_tree.assets/avltree_left_rotate_with_grandchild.png)

Fig. 有 grandChild 的左旋操作

观察发现,**「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的**。根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 `left` 替换为 `right` 、所有的 `right` 替换为 `left` ,即可得到「左旋」代码。 === "Java" ```java title="avl_tree.java" /* 左旋操作 */ TreeNode leftRotate(TreeNode node) { TreeNode child = node.right; TreeNode grandChild = child.left; // 以 child 为原点,将 node 向左旋转 child.left = node; node.right = grandChild; // 更新节点高度 updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "C++" ```cpp title="avl_tree.cpp" /* 左旋操作 */ TreeNode* leftRotate(TreeNode* node) { TreeNode* child = node->right; TreeNode* grandChild = child->left; // 以 child 为原点,将 node 向左旋转 child->left = node; node->right = grandChild; // 更新节点高度 updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "Python" ```python title="avl_tree.py" def __left_rotate(self, node: TreeNode | None) -> TreeNode | None: """左旋操作""" child = node.right grand_child = child.left # 以 child 为原点,将 node 向左旋转 child.left = node node.right = grand_child # 更新节点高度 self.__update_height(node) self.__update_height(child) # 返回旋转后子树的根节点 return child ``` === "Go" ```go title="avl_tree.go" /* 左旋操作 */ func (t *aVLTree) leftRotate(node *TreeNode) *TreeNode { child := node.Right grandChild := child.Left // 以 child 为原点,将 node 向左旋转 child.Left = node node.Right = grandChild // 更新节点高度 t.updateHeight(node) t.updateHeight(child) // 返回旋转后子树的根节点 return child } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 左旋操作 */ #leftRotate(node) { const child = node.right; const grandChild = child.left; // 以 child 为原点,将 node 向左旋转 child.left = node; node.right = grandChild; // 更新节点高度 this.#updateHeight(node); this.#updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 左旋操作 */ leftRotate(node: TreeNode): TreeNode { const child = node.right; const grandChild = child.left; // 以 child 为原点,将 node 向左旋转 child.left = node; node.right = grandChild; // 更新节点高度 this.updateHeight(node); this.updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{leftRotate} ``` === "C#" ```csharp title="avl_tree.cs" /* 左旋操作 */ TreeNode? leftRotate(TreeNode? node) { TreeNode? child = node.right; TreeNode? grandChild = child?.left; // 以 child 为原点,将 node 向左旋转 child.left = node; node.right = grandChild; // 更新节点高度 updateHeight(node); updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` === "Swift" ```swift title="avl_tree.swift" /* 左旋操作 */ func leftRotate(node: TreeNode?) -> TreeNode? { let child = node?.right let grandChild = child?.left // 以 child 为原点,将 node 向左旋转 child?.left = node node?.right = grandChild // 更新节点高度 updateHeight(node: node) updateHeight(node: child) // 返回旋转后子树的根节点 return child } ``` === "Zig" ```zig title="avl_tree.zig" // 左旋操作 fn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) { var child = node.?.right; var grandChild = child.?.left; // 以 child 为原点,将 node 向左旋转 child.?.left = node; node.?.right = grandChild; // 更新节点高度 self.updateHeight(node); self.updateHeight(child); // 返回旋转后子树的根节点 return child; } ``` ### Case 3 - 先左后右 对于下图的失衡节点 3 ,**单一使用左旋或右旋都无法使子树恢复平衡**,此时需要「先左旋后右旋」,即先对 `child` 执行「左旋」,再对 `node` 执行「右旋」。 ![先左旋后右旋](avl_tree.assets/avltree_left_right_rotate.png)

Fig. 先左旋后右旋

### Case 4 - 先右后左 同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 `child` 执行「右旋」,然后对 `node` 执行「左旋」。 ![先右旋后左旋](avl_tree.assets/avltree_right_left_rotate.png)

Fig. 先右旋后左旋

### 旋转的选择 下图描述的四种失衡情况与上述 Cases 逐个对应,分别需采用 **右旋、左旋、先右后左、先左后右** 的旋转操作。 ![AVL 树的四种旋转情况](avl_tree.assets/avltree_rotation_cases.png)

Fig. AVL 树的四种旋转情况

具体地,在代码中使用 **失衡节点的平衡因子、较高一侧子节点的平衡因子** 来确定失衡节点属于上图中的哪种情况。
| 失衡节点的平衡因子 | 子节点的平衡因子 | 应采用的旋转方法 | | ------------------ | ---------------- | ---------------- | | $>0$ (即左偏树) | $\geq 0$ | 右旋 | | $>0$ (即左偏树) | $<0$ | 先左旋后右旋 | | $<0$ (即右偏树) | $\leq 0$ | 左旋 | | $<0$ (即右偏树) | $>0$ | 先右旋后左旋 |
为方便使用,我们将旋转操作封装成一个函数。至此,**我们可以使用此函数来旋转各种失衡情况,使失衡节点重新恢复平衡**。 === "Java" ```java title="avl_tree.java" /* 执行旋转操作,使该子树重新恢复平衡 */ TreeNode rotate(TreeNode node) { // 获取节点 node 的平衡因子 int balanceFactor = balanceFactor(node); // 左偏树 if (balanceFactor > 1) { if (balanceFactor(node.left) >= 0) { // 右旋 return rightRotate(node); } else { // 先左旋后右旋 node.left = leftRotate(node.left); return rightRotate(node); } } // 右偏树 if (balanceFactor < -1) { if (balanceFactor(node.right) <= 0) { // 左旋 return leftRotate(node); } else { // 先右旋后左旋 node.right = rightRotate(node.right); return leftRotate(node); } } // 平衡树,无需旋转,直接返回 return node; } ``` === "C++" ```cpp title="avl_tree.cpp" /* 执行旋转操作,使该子树重新恢复平衡 */ TreeNode* rotate(TreeNode* node) { // 获取节点 node 的平衡因子 int _balanceFactor = balanceFactor(node); // 左偏树 if (_balanceFactor > 1) { if (balanceFactor(node->left) >= 0) { // 右旋 return rightRotate(node); } else { // 先左旋后右旋 node->left = leftRotate(node->left); return rightRotate(node); } } // 右偏树 if (_balanceFactor < -1) { if (balanceFactor(node->right) <= 0) { // 左旋 return leftRotate(node); } else { // 先右旋后左旋 node->right = rightRotate(node->right); return leftRotate(node); } } // 平衡树,无需旋转,直接返回 return node; } ``` === "Python" ```python title="avl_tree.py" def __rotate(self, node: TreeNode | None) -> TreeNode | None: """执行旋转操作,使该子树重新恢复平衡""" # 获取节点 node 的平衡因子 balance_factor = self.balance_factor(node) # 左偏树 if balance_factor > 1: if self.balance_factor(node.left) >= 0: # 右旋 return self.__right_rotate(node) else: # 先左旋后右旋 node.left = self.__left_rotate(node.left) return self.__right_rotate(node) # 右偏树 elif balance_factor < -1: if self.balance_factor(node.right) <= 0: # 左旋 return self.__left_rotate(node) else: # 先右旋后左旋 node.right = self.__right_rotate(node.right) return self.__left_rotate(node) # 平衡树,无需旋转,直接返回 return node ``` === "Go" ```go title="avl_tree.go" /* 执行旋转操作,使该子树重新恢复平衡 */ func (t *aVLTree) rotate(node *TreeNode) *TreeNode { // 获取节点 node 的平衡因子 // Go 推荐短变量,这里 bf 指代 t.balanceFactor bf := t.balanceFactor(node) // 左偏树 if bf > 1 { if t.balanceFactor(node.Left) >= 0 { // 右旋 return t.rightRotate(node) } else { // 先左旋后右旋 node.Left = t.leftRotate(node.Left) return t.rightRotate(node) } } // 右偏树 if bf < -1 { if t.balanceFactor(node.Right) <= 0 { // 左旋 return t.leftRotate(node) } else { // 先右旋后左旋 node.Right = t.rightRotate(node.Right) return t.leftRotate(node) } } // 平衡树,无需旋转,直接返回 return node } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 执行旋转操作,使该子树重新恢复平衡 */ #rotate(node) { // 获取节点 node 的平衡因子 const balanceFactor = this.balanceFactor(node); // 左偏树 if (balanceFactor > 1) { if (this.balanceFactor(node.left) >= 0) { // 右旋 return this.#rightRotate(node); } else { // 先左旋后右旋 node.left = this.#leftRotate(node.left); return this.#rightRotate(node); } } // 右偏树 if (balanceFactor < -1) { if (this.balanceFactor(node.right) <= 0) { // 左旋 return this.#leftRotate(node); } else { // 先右旋后左旋 node.right = this.#rightRotate(node.right); return this.#leftRotate(node); } } // 平衡树,无需旋转,直接返回 return node; } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 执行旋转操作,使该子树重新恢复平衡 */ rotate(node: TreeNode): TreeNode { // 获取节点 node 的平衡因子 const balanceFactor = this.balanceFactor(node); // 左偏树 if (balanceFactor > 1) { if (this.balanceFactor(node.left) >= 0) { // 右旋 return this.rightRotate(node); } else { // 先左旋后右旋 node.left = this.leftRotate(node.left); return this.rightRotate(node); } } // 右偏树 if (balanceFactor < -1) { if (this.balanceFactor(node.right) <= 0) { // 左旋 return this.leftRotate(node); } else { // 先右旋后左旋 node.right = this.rightRotate(node.right); return this.leftRotate(node); } } // 平衡树,无需旋转,直接返回 return node; } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{rotate} ``` === "C#" ```csharp title="avl_tree.cs" /* 执行旋转操作,使该子树重新恢复平衡 */ TreeNode? rotate(TreeNode? node) { // 获取节点 node 的平衡因子 int balanceFactorInt = balanceFactor(node); // 左偏树 if (balanceFactorInt > 1) { if (balanceFactor(node.left) >= 0) { // 右旋 return rightRotate(node); } else { // 先左旋后右旋 node.left = leftRotate(node?.left); return rightRotate(node); } } // 右偏树 if (balanceFactorInt < -1) { if (balanceFactor(node.right) <= 0) { // 左旋 return leftRotate(node); } else { // 先右旋后左旋 node.right = rightRotate(node?.right); return leftRotate(node); } } // 平衡树,无需旋转,直接返回 return node; } ``` === "Swift" ```swift title="avl_tree.swift" /* 执行旋转操作,使该子树重新恢复平衡 */ func rotate(node: TreeNode?) -> TreeNode? { // 获取节点 node 的平衡因子 let balanceFactor = balanceFactor(node: node) // 左偏树 if balanceFactor > 1 { if self.balanceFactor(node: node?.left) >= 0 { // 右旋 return rightRotate(node: node) } else { // 先左旋后右旋 node?.left = leftRotate(node: node?.left) return rightRotate(node: node) } } // 右偏树 if balanceFactor < -1 { if self.balanceFactor(node: node?.right) <= 0 { // 左旋 return leftRotate(node: node) } else { // 先右旋后左旋 node?.right = rightRotate(node: node?.right) return leftRotate(node: node) } } // 平衡树,无需旋转,直接返回 return node } ``` === "Zig" ```zig title="avl_tree.zig" // 执行旋转操作,使该子树重新恢复平衡 fn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) { // 获取节点 node 的平衡因子 var balance_factor = self.balanceFactor(node); // 左偏树 if (balance_factor > 1) { if (self.balanceFactor(node.?.left) >= 0) { // 右旋 return self.rightRotate(node); } else { // 先左旋后右旋 node.?.left = self.leftRotate(node.?.left); return self.rightRotate(node); } } // 右偏树 if (balance_factor < -1) { if (self.balanceFactor(node.?.right) <= 0) { // 左旋 return self.leftRotate(node); } else { // 先右旋后左旋 node.?.right = self.rightRotate(node.?.right); return self.leftRotate(node); } } // 平衡树,无需旋转,直接返回 return node; } ``` ## 7.4.3.   AVL 树常用操作 ### 插入节点 「AVL 树」的节点插入操作与「二叉搜索树」主体类似。不同的是,在插入节点后,从该节点到根节点的路径上会出现一系列「失衡节点」。所以,**我们需要从该节点开始,从底至顶地执行旋转操作,使所有失衡节点恢复平衡**。 === "Java" ```java title="avl_tree.java" /* 插入节点 */ TreeNode insert(int val) { root = insertHelper(root, val); return root; } /* 递归插入节点(辅助方法) */ TreeNode insertHelper(TreeNode node, int val) { if (node == null) return new TreeNode(val); /* 1. 查找插入位置,并插入节点 */ if (val < node.val) node.left = insertHelper(node.left, val); else if (val > node.val) node.right = insertHelper(node.right, val); else return node; // 重复节点不插入,直接返回 updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node); // 返回子树的根节点 return node; } ``` === "C++" ```cpp title="avl_tree.cpp" /* 插入节点 */ TreeNode* insert(int val) { root = insertHelper(root, val); return root; } /* 递归插入节点(辅助方法) */ TreeNode* insertHelper(TreeNode* node, int val) { if (node == nullptr) return new TreeNode(val); /* 1. 查找插入位置,并插入节点 */ if (val < node->val) node->left = insertHelper(node->left, val); else if (val > node->val) node->right = insertHelper(node->right, val); else return node; // 重复节点不插入,直接返回 updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node); // 返回子树的根节点 return node; } ``` === "Python" ```python title="avl_tree.py" def insert(self, val) -> TreeNode: """插入节点""" self.__root = self.__insert_helper(self.__root, val) return self.__root def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode: """递归插入节点(辅助方法)""" if node is None: return TreeNode(val) # 1. 查找插入位置,并插入节点 if val < node.val: node.left = self.__insert_helper(node.left, val) elif val > node.val: node.right = self.__insert_helper(node.right, val) else: # 重复节点不插入,直接返回 return node # 更新节点高度 self.__update_height(node) # 2. 执行旋转操作,使该子树重新恢复平衡 return self.__rotate(node) ``` === "Go" ```go title="avl_tree.go" /* 插入节点 */ func (t *aVLTree) insert(val int) *TreeNode { t.root = t.insertHelper(t.root, val) return t.root } /* 递归插入节点(辅助方法) */ func (t *aVLTree) insertHelper(node *TreeNode, val int) *TreeNode { if node == nil { return NewTreeNode(val) } /* 1. 查找插入位置,并插入节点 */ if val < node.Val { node.Left = t.insertHelper(node.Left, val) } else if val > node.Val { node.Right = t.insertHelper(node.Right, val) } else { // 重复节点不插入,直接返回 return node } // 更新节点高度 t.updateHeight(node) /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = t.rotate(node) // 返回子树的根节点 return node } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 插入节点 */ insert(val) { this.root = this.#insertHelper(this.root, val); return this.root; } /* 递归插入节点(辅助方法) */ #insertHelper(node, val) { if (node === null) return new TreeNode(val); /* 1. 查找插入位置,并插入节点 */ if (val < node.val) node.left = this.#insertHelper(node.left, val); else if (val > node.val) node.right = this.#insertHelper(node.right, val); else return node; // 重复节点不插入,直接返回 this.#updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = this.#rotate(node); // 返回子树的根节点 return node; } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 插入节点 */ insert(val: number): TreeNode { this.root = this.insertHelper(this.root, val); return this.root; } /* 递归插入节点(辅助方法) */ insertHelper(node: TreeNode, val: number): TreeNode { if (node === null) return new TreeNode(val); /* 1. 查找插入位置,并插入节点 */ if (val < node.val) { node.left = this.insertHelper(node.left, val); } else if (val > node.val) { node.right = this.insertHelper(node.right, val); } else { return node; // 重复节点不插入,直接返回 } this.updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = this.rotate(node); // 返回子树的根节点 return node; } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{insert} [class]{aVLTree}-[func]{insertHelper} ``` === "C#" ```csharp title="avl_tree.cs" /* 插入节点 */ TreeNode? insert(int val) { root = insertHelper(root, val); return root; } /* 递归插入节点(辅助方法) */ TreeNode? insertHelper(TreeNode? node, int val) { if (node == null) return new TreeNode(val); /* 1. 查找插入位置,并插入节点 */ if (val < node.val) node.left = insertHelper(node.left, val); else if (val > node.val) node.right = insertHelper(node.right, val); else return node; // 重复节点不插入,直接返回 updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node); // 返回子树的根节点 return node; } ``` === "Swift" ```swift title="avl_tree.swift" /* 插入节点 */ @discardableResult func insert(val: Int) -> TreeNode? { root = insertHelper(node: root, val: val) return root } /* 递归插入节点(辅助方法) */ func insertHelper(node: TreeNode?, val: Int) -> TreeNode? { var node = node if node == nil { return TreeNode(x: val) } /* 1. 查找插入位置,并插入节点 */ if val < node!.val { node?.left = insertHelper(node: node?.left, val: val) } else if val > node!.val { node?.right = insertHelper(node: node?.right, val: val) } else { return node // 重复节点不插入,直接返回 } updateHeight(node: node) // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node: node) // 返回子树的根节点 return node } ``` === "Zig" ```zig title="avl_tree.zig" // 插入节点 fn insert(self: *Self, val: T) !?*inc.TreeNode(T) { self.root = try self.insertHelper(self.root, val); return self.root; } // 递归插入节点(辅助方法) fn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) { var node = node_; if (node == null) { var tmp_node = try self.mem_allocator.create(inc.TreeNode(T)); tmp_node.init(val); return tmp_node; } // 1. 查找插入位置,并插入节点 if (val < node.?.val) { node.?.left = try self.insertHelper(node.?.left, val); } else if (val > node.?.val) { node.?.right = try self.insertHelper(node.?.right, val); } else { return node; // 重复节点不插入,直接返回 } self.updateHeight(node); // 更新节点高度 // 2. 执行旋转操作,使该子树重新恢复平衡 node = self.rotate(node); // 返回子树的根节点 return node; } ``` ### 删除节点 「AVL 树」删除节点操作与「二叉搜索树」删除节点操作总体相同。类似地,**在删除节点后,也需要从底至顶地执行旋转操作,使所有失衡节点恢复平衡**。 === "Java" ```java title="avl_tree.java" /* 删除节点 */ TreeNode remove(int val) { root = removeHelper(root, val); return root; } /* 递归删除节点(辅助方法) */ TreeNode removeHelper(TreeNode node, int val) { if (node == null) return null; /* 1. 查找节点,并删除之 */ if (val < node.val) node.left = removeHelper(node.left, val); else if (val > node.val) node.right = removeHelper(node.right, val); else { if (node.left == null || node.right == null) { TreeNode child = node.left != null ? node.left : node.right; // 子节点数量 = 0 ,直接删除 node 并返回 if (child == null) return null; // 子节点数量 = 1 ,直接删除 node else node = child; } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 TreeNode temp = getInOrderNext(node.right); node.right = removeHelper(node.right, temp.val); node.val = temp.val; } } updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node); // 返回子树的根节点 return node; } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ TreeNode getInOrderNext(TreeNode node) { if (node == null) return node; // 循环访问左子节点,直到叶节点时为最小节点,跳出 while (node.left != null) { node = node.left; } return node; } ``` === "C++" ```cpp title="avl_tree.cpp" /* 删除节点 */ TreeNode* remove(int val) { root = removeHelper(root, val); return root; } /* 递归删除节点(辅助方法) */ TreeNode* removeHelper(TreeNode* node, int val) { if (node == nullptr) return nullptr; /* 1. 查找节点,并删除之 */ if (val < node->val) node->left = removeHelper(node->left, val); else if (val > node->val) node->right = removeHelper(node->right, val); else { if (node->left == nullptr || node->right == nullptr) { TreeNode* child = node->left != nullptr ? node->left : node->right; // 子节点数量 = 0 ,直接删除 node 并返回 if (child == nullptr) { delete node; return nullptr; } // 子节点数量 = 1 ,直接删除 node else { delete node; node = child; } } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 TreeNode* temp = getInOrderNext(node->right); int tempVal = temp->val; node->right = removeHelper(node->right, temp->val); node->val = tempVal; } } updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node); // 返回子树的根节点 return node; } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ TreeNode* getInOrderNext(TreeNode* node) { if (node == nullptr) return node; // 循环访问左子节点,直到叶节点时为最小节点,跳出 while (node->left != nullptr) { node = node->left; } return node; } ``` === "Python" ```python title="avl_tree.py" def remove(self, val: int) -> TreeNode | None: """删除节点""" self.__root = self.__remove_helper(self.__root, val) return self.__root def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None: """递归删除节点(辅助方法)""" if node is None: return None # 1. 查找节点,并删除之 if val < node.val: node.left = self.__remove_helper(node.left, val) elif val > node.val: node.right = self.__remove_helper(node.right, val) else: if node.left is None or node.right is None: child = node.left or node.right # 子节点数量 = 0 ,直接删除 node 并返回 if child is None: return None # 子节点数量 = 1 ,直接删除 node else: node = child else: # 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 temp = self.__get_inorder_next(node.right) node.right = self.__remove_helper(node.right, temp.val) node.val = temp.val # 更新节点高度 self.__update_height(node) # 2. 执行旋转操作,使该子树重新恢复平衡 return self.__rotate(node) def __get_inorder_next(self, node: TreeNode | None) -> TreeNode | None: """获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况)""" if node is None: return None # 循环访问左子节点,直到叶节点时为最小节点,跳出 while node.left is not None: node = node.left return node ``` === "Go" ```go title="avl_tree.go" /* 删除节点 */ func (t *aVLTree) remove(val int) *TreeNode { root := t.removeHelper(t.root, val) return root } /* 递归删除节点(辅助方法) */ func (t *aVLTree) removeHelper(node *TreeNode, val int) *TreeNode { if node == nil { return nil } /* 1. 查找节点,并删除之 */ if val < node.Val { node.Left = t.removeHelper(node.Left, val) } else if val > node.Val { node.Right = t.removeHelper(node.Right, val) } else { if node.Left == nil || node.Right == nil { child := node.Left if node.Right != nil { child = node.Right } // 子节点数量 = 0 ,直接删除 node 并返回 if child == nil { return nil } else { // 子节点数量 = 1 ,直接删除 node node = child } } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 temp := t.getInOrderNext(node.Right) node.Right = t.removeHelper(node.Right, temp.Val) node.Val = temp.Val } } // 更新节点高度 t.updateHeight(node) /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = t.rotate(node) // 返回子树的根节点 return node } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ func (t *aVLTree) getInOrderNext(node *TreeNode) *TreeNode { if node == nil { return node } // 循环访问左子节点,直到叶节点时为最小节点,跳出 for node.Left != nil { node = node.Left } return node } ``` === "JavaScript" ```javascript title="avl_tree.js" /* 删除节点 */ remove(val) { this.root = this.#removeHelper(this.root, val); return this.root; } /* 递归删除节点(辅助方法) */ #removeHelper(node, val) { if (node === null) return null; /* 1. 查找节点,并删除之 */ if (val < node.val) node.left = this.#removeHelper(node.left, val); else if (val > node.val) node.right = this.#removeHelper(node.right, val); else { if (node.left === null || node.right === null) { const child = node.left !== null ? node.left : node.right; // 子节点数量 = 0 ,直接删除 node 并返回 if (child === null) return null; // 子节点数量 = 1 ,直接删除 node else node = child; } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 const temp = this.#getInOrderNext(node.right); node.right = this.#removeHelper(node.right, temp.val); node.val = temp.val; } } this.#updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = this.#rotate(node); // 返回子树的根节点 return node; } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ #getInOrderNext(node) { if (node === null) return node; // 循环访问左子节点,直到叶节点时为最小节点,跳出 while (node.left !== null) { node = node.left; } return node; } ``` === "TypeScript" ```typescript title="avl_tree.ts" /* 删除节点 */ remove(val: number): TreeNode { this.root = this.removeHelper(this.root, val); return this.root; } /* 递归删除节点(辅助方法) */ removeHelper(node: TreeNode, val: number): TreeNode { if (node === null) return null; /* 1. 查找节点,并删除之 */ if (val < node.val) { node.left = this.removeHelper(node.left, val); } else if (val > node.val) { node.right = this.removeHelper(node.right, val); } else { if (node.left === null || node.right === null) { const child = node.left !== null ? node.left : node.right; // 子节点数量 = 0 ,直接删除 node 并返回 if (child === null) { return null; } else { // 子节点数量 = 1 ,直接删除 node node = child; } } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 const temp = this.getInOrderNext(node.right); node.right = this.removeHelper(node.right, temp.val); node.val = temp.val; } } this.updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = this.rotate(node); // 返回子树的根节点 return node; } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ getInOrderNext(node: TreeNode): TreeNode { if (node === null) return node; // 循环访问左子节点,直到叶节点时为最小节点,跳出 while (node.left !== null) { node = node.left; } return node; } ``` === "C" ```c title="avl_tree.c" [class]{aVLTree}-[func]{remove} [class]{aVLTree}-[func]{removeHelper} [class]{aVLTree}-[func]{getInOrderNext} ``` === "C#" ```csharp title="avl_tree.cs" /* 删除节点 */ TreeNode? remove(int val) { root = removeHelper(root, val); return root; } /* 递归删除节点(辅助方法) */ TreeNode? removeHelper(TreeNode? node, int val) { if (node == null) return null; /* 1. 查找节点,并删除之 */ if (val < node.val) node.left = removeHelper(node.left, val); else if (val > node.val) node.right = removeHelper(node.right, val); else { if (node.left == null || node.right == null) { TreeNode? child = node.left != null ? node.left : node.right; // 子节点数量 = 0 ,直接删除 node 并返回 if (child == null) return null; // 子节点数量 = 1 ,直接删除 node else node = child; } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 TreeNode? temp = getInOrderNext(node.right); node.right = removeHelper(node.right, temp.val); node.val = temp.val; } } updateHeight(node); // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node); // 返回子树的根节点 return node; } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ TreeNode? getInOrderNext(TreeNode? node) { if (node == null) return node; // 循环访问左子节点,直到叶节点时为最小节点,跳出 while (node.left != null) { node = node.left; } return node; } ``` === "Swift" ```swift title="avl_tree.swift" /* 删除节点 */ @discardableResult func remove(val: Int) -> TreeNode? { root = removeHelper(node: root, val: val) return root } /* 递归删除节点(辅助方法) */ func removeHelper(node: TreeNode?, val: Int) -> TreeNode? { var node = node if node == nil { return nil } /* 1. 查找节点,并删除之 */ if val < node!.val { node?.left = removeHelper(node: node?.left, val: val) } else if val > node!.val { node?.right = removeHelper(node: node?.right, val: val) } else { if node?.left == nil || node?.right == nil { let child = node?.left != nil ? node?.left : node?.right // 子节点数量 = 0 ,直接删除 node 并返回 if child == nil { return nil } // 子节点数量 = 1 ,直接删除 node else { node = child } } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 let temp = getInOrderNext(node: node?.right) node?.right = removeHelper(node: node?.right, val: temp!.val) node?.val = temp!.val } } updateHeight(node: node) // 更新节点高度 /* 2. 执行旋转操作,使该子树重新恢复平衡 */ node = rotate(node: node) // 返回子树的根节点 return node } /* 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) */ func getInOrderNext(node: TreeNode?) -> TreeNode? { var node = node if node == nil { return node } // 循环访问左子节点,直到叶节点时为最小节点,跳出 while node?.left != nil { node = node?.left } return node } ``` === "Zig" ```zig title="avl_tree.zig" // 删除节点 fn remove(self: *Self, val: T) ?*inc.TreeNode(T) { self.root = self.removeHelper(self.root, val); return self.root; } // 递归删除节点(辅助方法) fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) { var node = node_; if (node == null) return null; // 1. 查找节点,并删除之 if (val < node.?.val) { node.?.left = self.removeHelper(node.?.left, val); } else if (val > node.?.val) { node.?.right = self.removeHelper(node.?.right, val); } else { if (node.?.left == null or node.?.right == null) { var child = if (node.?.left != null) node.?.left else node.?.right; // 子节点数量 = 0 ,直接删除 node 并返回 if (child == null) { return null; // 子节点数量 = 1 ,直接删除 node } else { node = child; } } else { // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点 var temp = self.getInOrderNext(node.?.right); node.?.right = self.removeHelper(node.?.right, temp.?.val); node.?.val = temp.?.val; } } self.updateHeight(node); // 更新节点高度 // 2. 执行旋转操作,使该子树重新恢复平衡 node = self.rotate(node); // 返回子树的根节点 return node; } // 获取中序遍历中的下一个节点(仅适用于 root 有左子节点的情况) fn getInOrderNext(self: *Self, node_: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) { _ = self; var node = node_; if (node == null) return node; // 循环访问左子节点,直到叶节点时为最小节点,跳出 while (node.?.left != null) { node = node.?.left; } return node; } ``` ### 查找节点 「AVL 树」的节点查找操作与「二叉搜索树」一致,在此不再赘述。 ## 7.4.4.   AVL 树典型应用 - 组织存储大型数据,适用于高频查找、低频增删场景; - 用于建立数据库中的索引系统; !!! question "为什么红黑树比 AVL 树更受欢迎?" 红黑树的平衡条件相对宽松,因此在红黑树中插入与删除节点所需的旋转操作相对更少,节点增删操作相比 AVL 树的效率更高。