--- comments: true status: new --- # 2.2 迭代与递归 在数据结构与算法中,重复执行某个任务是很常见的,其与算法的复杂度密切相关。而要重复执行某个任务,我们通常会选用两种基本的程序结构:迭代和递归。 ## 2.2.1 迭代 「迭代 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段代码,直到这个条件不再满足。 ### 1. for 循环 `for` 循环是最常见的迭代形式之一,**适合预先知道迭代次数时使用**。 以下函数基于 `for` 循环实现了求和 $1 + 2 + \dots + n$ ,求和结果使用变量 `res` 记录。需要注意的是,Python 中 `range(a, b)` 对应的区间是“左闭右开”的,对应的遍历范围为 $a, a + 1, \dots, b-1$ 。 === "Python" ```python title="iteration.py" def for_loop(n: int) -> int: """for 循环""" res = 0 # 循环求和 1, 2, ..., n-1, n for i in range(1, n + 1): res += i return res ``` === "C++" ```cpp title="iteration.cpp" /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; ++i) { res += i; } return res; } ``` === "Java" ```java title="iteration.java" /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { res += i; } return res; } ``` === "C#" ```csharp title="iteration.cs" /* for 循环 */ int ForLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { res += i; } return res; } ``` === "Go" ```go title="iteration.go" /* for 循环 */ func forLoop(n int) int { res := 0 // 循环求和 1, 2, ..., n-1, n for i := 1; i <= n; i++ { res += i } return res } ``` === "Swift" ```swift title="iteration.swift" /* for 循环 */ func forLoop(n: Int) -> Int { var res = 0 // 循环求和 1, 2, ..., n-1, n for i in 1 ... n { res += i } return res } ``` === "JS" ```javascript title="iteration.js" /* for 循环 */ function forLoop(n) { let res = 0; // 循环求和 1, 2, ..., n-1, n for (let i = 1; i <= n; i++) { res += i; } return res; } ``` === "TS" ```typescript title="iteration.ts" /* for 循环 */ function forLoop(n: number): number { let res = 0; // 循环求和 1, 2, ..., n-1, n for (let i = 1; i <= n; i++) { res += i; } return res; } ``` === "Dart" ```dart title="iteration.dart" /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { res += i; } return res; } ``` === "Rust" ```rust title="iteration.rs" /* for 循环 */ fn for_loop(n: i32) -> i32 { let mut res = 0; // 循环求和 1, 2, ..., n-1, n for i in 1..=n { res += i; } res } ``` === "C" ```c title="iteration.c" /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { res += i; } return res; } ``` === "Zig" ```zig title="iteration.zig" // for 循环 fn forLoop(n: usize) i32 { var res: i32 = 0; // 循环求和 1, 2, ..., n-1, n for (1..n+1) |i| { res = res + @as(i32, @intCast(i)); } return res; } ``` 图 2-1 展示了该求和函数的流程框图。 ![求和函数的流程框图](iteration_and_recursion.assets/iteration.png)
图 2-1 求和函数的流程框图
此求和函数的操作数量与输入数据大小 $n$ 成正比,或者说成“线性关系”。实际上,**时间复杂度描述的就是这个“线性关系”**。相关内容将会在下一节中详细介绍。 ### 2. while 循环 与 `for` 循环类似,`while` 循环也是一种实现迭代的方法。在 `while` 循环中,程序每轮都会先检查条件,如果条件为真则继续执行,否则就结束循环。 下面,我们用 `while` 循环来实现求和 $1 + 2 + \dots + n$ 。 === "Python" ```python title="iteration.py" def while_loop(n: int) -> int: """while 循环""" res = 0 i = 1 # 初始化条件变量 # 循环求和 1, 2, ..., n-1, n while i <= n: res += i i += 1 # 更新条件变量 return res ``` === "C++" ```cpp title="iteration.cpp" /* while 循环 */ int whileLoop(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } ``` === "Java" ```java title="iteration.java" /* while 循环 */ int whileLoop(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } ``` === "C#" ```csharp title="iteration.cs" /* while 循环 */ int WhileLoop(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i += 1; // 更新条件变量 } return res; } ``` === "Go" ```go title="iteration.go" /* while 循环 */ func whileLoop(n int) int { res := 0 // 初始化条件变量 i := 1 // 循环求和 1, 2, ..., n-1, n for i <= n { res += i // 更新条件变量 i++ } return res } ``` === "Swift" ```swift title="iteration.swift" /* while 循环 */ func whileLoop(n: Int) -> Int { var res = 0 var i = 1 // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while i <= n { res += i i += 1 // 更新条件变量 } return res } ``` === "JS" ```javascript title="iteration.js" /* while 循环 */ function whileLoop(n) { let res = 0; let i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } ``` === "TS" ```typescript title="iteration.ts" /* while 循环 */ function whileLoop(n: number): number { let res = 0; let i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } ``` === "Dart" ```dart title="iteration.dart" /* while 循环 */ int whileLoop(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } ``` === "Rust" ```rust title="iteration.rs" /* while 循环 */ fn while_loop(n: i32) -> i32 { let mut res = 0; let mut i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while i <= n { res += i; i += 1; // 更新条件变量 } res } ``` === "C" ```c title="iteration.c" /* while 循环 */ int whileLoop(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += i; i++; // 更新条件变量 } return res; } ``` === "Zig" ```zig title="iteration.zig" // while 循环 fn whileLoop(n: i32) i32 { var res: i32 = 0; var i: i32 = 1; // 初始化条件变量 // 循环求和 1, 2, ..., n-1, n while (i <= n) { res += @intCast(i); i += 1; } return res; } ``` 在 `while` 循环中,由于初始化和更新条件变量的步骤是独立在循环结构之外的,**因此它比 `for` 循环的自由度更高**。 例如在以下代码中,条件变量 $i$ 每轮进行了两次更新,这种情况就不太方便用 `for` 循环实现。 === "Python" ```python title="iteration.py" def while_loop_ii(n: int) -> int: """while 循环(两次更新)""" res = 0 i = 1 # 初始化条件变量 # 循环求和 1, 4, ... while i <= n: res += i # 更新条件变量 i += 1 i *= 2 return res ``` === "C++" ```cpp title="iteration.cpp" /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; } ``` === "Java" ```java title="iteration.java" /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; } ``` === "C#" ```csharp title="iteration.cs" /* while 循环(两次更新) */ int WhileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 2, 4, 5... while (i <= n) { res += i; // 更新条件变量 i += 1; i *= 2; } return res; } ``` === "Go" ```go title="iteration.go" /* while 循环(两次更新) */ func whileLoopII(n int) int { res := 0 // 初始化条件变量 i := 1 // 循环求和 1, 4, ... for i <= n { res += i // 更新条件变量 i++ i *= 2 } return res } ``` === "Swift" ```swift title="iteration.swift" /* while 循环(两次更新) */ func whileLoopII(n: Int) -> Int { var res = 0 var i = 1 // 初始化条件变量 // 循环求和 1, 4, ... while i <= n { res += i // 更新条件变量 i += 1 i *= 2 } return res } ``` === "JS" ```javascript title="iteration.js" /* while 循环(两次更新) */ function whileLoopII(n) { let res = 0; let i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; } ``` === "TS" ```typescript title="iteration.ts" /* while 循环(两次更新) */ function whileLoopII(n: number): number { let res = 0; let i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; } ``` === "Dart" ```dart title="iteration.dart" /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; } ``` === "Rust" ```rust title="iteration.rs" /* while 循环(两次更新) */ fn while_loop_ii(n: i32) -> i32 { let mut res = 0; let mut i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while i <= n { res += i; // 更新条件变量 i += 1; i *= 2; } res } ``` === "C" ```c title="iteration.c" /* while 循环(两次更新) */ int whileLoopII(int n) { int res = 0; int i = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += i; // 更新条件变量 i++; i *= 2; } return res; } ``` === "Zig" ```zig title="iteration.zig" // while 循环(两次更新) fn whileLoopII(n: i32) i32 { var res: i32 = 0; var i: i32 = 1; // 初始化条件变量 // 循环求和 1, 4, ... while (i <= n) { res += @intCast(i); // 更新条件变量 i += 1; i *= 2; } return res; } ``` 总的来说,**`for` 循环的代码更加紧凑,`while` 循环更加灵活**,两者都可以实现迭代结构。选择使用哪一个应该根据特定问题的需求来决定。 ### 3. 嵌套循环 我们可以在一个循环结构内嵌套另一个循环结构,以 `for` 循环为例: === "Python" ```python title="iteration.py" def nested_for_loop(n: int) -> str: """双层 for 循环""" res = "" # 循环 i = 1, 2, ..., n-1, n for i in range(1, n + 1): # 循环 j = 1, 2, ..., n-1, n for j in range(1, n + 1): res += f"({i}, {j}), " return res ``` === "C++" ```cpp title="iteration.cpp" /* 双层 for 循环 */ string nestedForLoop(int n) { ostringstream res; // 循环 i = 1, 2, ..., n-1, n for (int i = 1; i <= n; ++i) { // 循环 j = 1, 2, ..., n-1, n for (int j = 1; j <= n; ++j) { res << "(" << i << ", " << j << "), "; } } return res.str(); } ``` === "Java" ```java title="iteration.java" /* 双层 for 循环 */ String nestedForLoop(int n) { StringBuilder res = new StringBuilder(); // 循环 i = 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { // 循环 j = 1, 2, ..., n-1, n for (int j = 1; j <= n; j++) { res.append("(" + i + ", " + j + "), "); } } return res.toString(); } ``` === "C#" ```csharp title="iteration.cs" /* 双层 for 循环 */ string NestedForLoop(int n) { StringBuilder res = new(); // 循环 i = 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { // 循环 j = 1, 2, ..., n-1, n for (int j = 1; j <= n; j++) { res.Append($"({i}, {j}), "); } } return res.ToString(); } ``` === "Go" ```go title="iteration.go" /* 双层 for 循环 */ func nestedForLoop(n int) string { res := "" // 循环 i = 1, 2, ..., n-1, n for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { // 循环 j = 1, 2, ..., n-1, n res += fmt.Sprintf("(%d, %d), ", i, j) } } return res } ``` === "Swift" ```swift title="iteration.swift" /* 双层 for 循环 */ func nestedForLoop(n: Int) -> String { var res = "" // 循环 i = 1, 2, ..., n-1, n for i in 1 ... n { // 循环 j = 1, 2, ..., n-1, n for j in 1 ... n { res.append("(\(i), \(j)), ") } } return res } ``` === "JS" ```javascript title="iteration.js" /* 双层 for 循环 */ function nestedForLoop(n) { let res = ''; // 循环 i = 1, 2, ..., n-1, n for (let i = 1; i <= n; i++) { // 循环 j = 1, 2, ..., n-1, n for (let j = 1; j <= n; j++) { res += `(${i}, ${j}), `; } } return res; } ``` === "TS" ```typescript title="iteration.ts" /* 双层 for 循环 */ function nestedForLoop(n: number): string { let res = ''; // 循环 i = 1, 2, ..., n-1, n for (let i = 1; i <= n; i++) { // 循环 j = 1, 2, ..., n-1, n for (let j = 1; j <= n; j++) { res += `(${i}, ${j}), `; } } return res; } ``` === "Dart" ```dart title="iteration.dart" /* 双层 for 循环 */ String nestedForLoop(int n) { String res = ""; // 循环 i = 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { // 循环 j = 1, 2, ..., n-1, n for (int j = 1; j <= n; j++) { res += "($i, $j), "; } } return res; } ``` === "Rust" ```rust title="iteration.rs" /* 双层 for 循环 */ fn nested_for_loop(n: i32) -> String { let mut res = vec![]; // 循环 i = 1, 2, ..., n-1, n for i in 1..=n { // 循环 j = 1, 2, ..., n-1, n for j in 1..=n { res.push(format!("({}, {}), ", i, j)); } } res.join("") } ``` === "C" ```c title="iteration.c" /* 双层 for 循环 */ char *nestedForLoop(int n) { // n * n 为对应点数量,"(i, j), " 对应字符串长最大为 6+10*2,加上最后一个空字符 \0 的额外空间 int size = n * n * 26 + 1; char *res = malloc(size * sizeof(char)); // 循环 i = 1, 2, ..., n-1, n for (int i = 1; i <= n; i++) { // 循环 j = 1, 2, ..., n-1, n for (int j = 1; j <= n; j++) { char tmp[26]; snprintf(tmp, sizeof(tmp), "(%d, %d), ", i, j); strncat(res, tmp, size - strlen(res) - 1); } } return res; } ``` === "Zig" ```zig title="iteration.zig" // 双层 for 循环 fn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 { var res = std.ArrayList(u8).init(allocator); defer res.deinit(); var buffer: [20]u8 = undefined; // 循环 i = 1, 2, ..., n-1, n for (1..n+1) |i| { // 循环 j = 1, 2, ..., n-1, n for (1..n+1) |j| { var _str = try std.fmt.bufPrint(&buffer, "({d}, {d}), ", .{i, j}); try res.appendSlice(_str); } } return res.toOwnedSlice(); } ``` 图 2-2 给出了该嵌套循环的流程框图。 ![嵌套循环的流程框图](iteration_and_recursion.assets/nested_iteration.png)图 2-2 嵌套循环的流程框图
在这种情况下,函数的操作数量与 $n^2$ 成正比,或者说算法运行时间和输入数据大小 $n$ 成“平方关系”。 我们可以继续添加嵌套循环,每一次嵌套都是一次“升维”,将会使时间复杂度提高至“立方关系”、“四次方关系”、以此类推。 ## 2.2.2 递归 「递归 recursion」是一种算法策略,通过函数调用自身来解决问题。它主要包含两个阶段。 1. **递**:程序不断深入地调用自身,通常传入更小或更简化的参数,直到达到“终止条件”。 2. **归**:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. **终止条件**:用于决定什么时候由“递”转“归”。 2. **递归调用**:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. **返回结果**:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 `recur(n)` ,就可以完成 $1 + 2 + \dots + n$ 的计算: === "Python" ```python title="recursion.py" def recur(n: int) -> int: """递归""" # 终止条件 if n == 1: return 1 # 递:递归调用 res = recur(n - 1) # 归:返回结果 return n + res ``` === "C++" ```cpp title="recursion.cpp" /* 递归 */ int recur(int n) { // 终止条件 if (n == 1) return 1; // 递:递归调用 int res = recur(n - 1); // 归:返回结果 return n + res; } ``` === "Java" ```java title="recursion.java" /* 递归 */ int recur(int n) { // 终止条件 if (n == 1) return 1; // 递:递归调用 int res = recur(n - 1); // 归:返回结果 return n + res; } ``` === "C#" ```csharp title="recursion.cs" /* 递归 */ int Recur(int n) { // 终止条件 if (n == 1) return 1; // 递:递归调用 int res = Recur(n - 1); // 归:返回结果 return n + res; } ``` === "Go" ```go title="recursion.go" /* 递归 */ func recur(n int) int { // 终止条件 if n == 1 { return 1 } // 递:递归调用 res := recur(n - 1) // 归:返回结果 return n + res } ``` === "Swift" ```swift title="recursion.swift" /* 递归 */ func recur(n: Int) -> Int { // 终止条件 if n == 1 { return 1 } // 递:递归调用 let res = recur(n: n - 1) // 归:返回结果 return n + res } ``` === "JS" ```javascript title="recursion.js" /* 递归 */ function recur(n) { // 终止条件 if (n === 1) return 1; // 递:递归调用 const res = recur(n - 1); // 归:返回结果 return n + res; } ``` === "TS" ```typescript title="recursion.ts" /* 递归 */ function recur(n: number): number { // 终止条件 if (n === 1) return 1; // 递:递归调用 const res = recur(n - 1); // 归:返回结果 return n + res; } ``` === "Dart" ```dart title="recursion.dart" /* 递归 */ int recur(int n) { // 终止条件 if (n == 1) return 1; // 递:递归调用 int res = recur(n - 1); // 归:返回结果 return n + res; } ``` === "Rust" ```rust title="recursion.rs" /* 递归 */ fn recur(n: i32) -> i32 { // 终止条件 if n == 1 { return 1; } // 递:递归调用 let res = recur(n - 1); // 归:返回结果 n + res } ``` === "C" ```c title="recursion.c" /* 递归 */ int recur(int n) { // 终止条件 if (n == 1) return 1; // 递:递归调用 int res = recur(n - 1); // 归:返回结果 return n + res; } ``` === "Zig" ```zig title="recursion.zig" // 递归函数 fn recur(n: i32) i32 { // 终止条件 if (n == 1) { return 1; } // 递:递归调用 var res: i32 = recur(n - 1); // 归:返回结果 return n + res; } ``` 图 2-3 展示了该函数的递归过程。 ![求和函数的递归过程](iteration_and_recursion.assets/recursion_sum.png)图 2-3 求和函数的递归过程
虽然从计算角度看,迭代与递归可以得到相同的结果,**但它们代表了两种完全不同的思考和解决问题的范式**。 - **迭代**:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。 - **递归**:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述的求和函数为例,设问题 $f(n) = 1 + 2 + \dots + n$ 。 - **迭代**:在循环中模拟求和过程,从 $1$ 遍历到 $n$ ,每轮执行求和操作,即可求得 $f(n)$ 。 - **递归**:将问题分解为子问题 $f(n) = n + f(n-1)$ ,不断(递归地)分解下去,直至基本情况 $f(1) = 1$ 时终止。 ### 1. 调用栈 递归函数每次调用自身时,系统都会为新开启的函数分配内存,以存储局部变量、调用地址和其他信息等。这将导致两方面的结果。 - 函数的上下文数据都存储在称为“栈帧空间”的内存区域中,直至函数返回后才会被释放。因此,**递归通常比迭代更加耗费内存空间**。 - 递归调用函数会产生额外的开销。**因此递归通常比循环的时间效率更低**。 如图 2-4 所示,在触发终止条件前,同时存在 $n$ 个未返回的递归函数,**递归深度为 $n$** 。 ![递归调用深度](iteration_and_recursion.assets/recursion_sum_depth.png)图 2-4 递归调用深度
在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出报错。 ### 2. 尾递归 有趣的是,**如果函数在返回前的最后一步才进行递归调用**,则该函数可以被编译器或解释器优化,使其在空间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 - **普通递归**:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下文。 - **尾递归**:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无需继续执行其他操作,因此系统无需保存上一层函数的上下文。 以计算 $1 + 2 + \dots + n$ 为例,我们可以将结果变量 `res` 设为函数参数,从而实现尾递归。 === "Python" ```python title="recursion.py" def tail_recur(n, res): """尾递归""" # 终止条件 if n == 0: return res # 尾递归调用 return tail_recur(n - 1, res + n) ``` === "C++" ```cpp title="recursion.cpp" /* 尾递归 */ int tailRecur(int n, int res) { // 终止条件 if (n == 0) return res; // 尾递归调用 return tailRecur(n - 1, res + n); } ``` === "Java" ```java title="recursion.java" /* 尾递归 */ int tailRecur(int n, int res) { // 终止条件 if (n == 0) return res; // 尾递归调用 return tailRecur(n - 1, res + n); } ``` === "C#" ```csharp title="recursion.cs" /* 尾递归 */ int TailRecur(int n, int res) { // 终止条件 if (n == 0) return res; // 尾递归调用 return TailRecur(n - 1, res + n); } ``` === "Go" ```go title="recursion.go" /* 尾递归 */ func tailRecur(n int, res int) int { // 终止条件 if n == 0 { return res } // 尾递归调用 return tailRecur(n-1, res+n) } ``` === "Swift" ```swift title="recursion.swift" /* 尾递归 */ func tailRecur(n: Int, res: Int) -> Int { // 终止条件 if n == 0 { return res } // 尾递归调用 return tailRecur(n: n - 1, res: res + n) } ``` === "JS" ```javascript title="recursion.js" /* 尾递归 */ function tailRecur(n, res) { // 终止条件 if (n === 0) return res; // 尾递归调用 return tailRecur(n - 1, res + n); } ``` === "TS" ```typescript title="recursion.ts" /* 尾递归 */ function tailRecur(n: number, res: number): number { // 终止条件 if (n === 0) return res; // 尾递归调用 return tailRecur(n - 1, res + n); } ``` === "Dart" ```dart title="recursion.dart" /* 尾递归 */ int tailRecur(int n, int res) { // 终止条件 if (n == 0) return res; // 尾递归调用 return tailRecur(n - 1, res + n); } ``` === "Rust" ```rust title="recursion.rs" /* 尾递归 */ fn tail_recur(n: i32, res: i32) -> i32 { // 终止条件 if n == 0 { return res; } // 尾递归调用 tail_recur(n - 1, res + n) } ``` === "C" ```c title="recursion.c" /* 尾递归 */ int tailRecur(int n, int res) { // 终止条件 if (n == 0) return res; // 尾递归调用 return tailRecur(n - 1, res + n); } ``` === "Zig" ```zig title="recursion.zig" // 尾递归函数 fn tailRecur(n: i32, res: i32) i32 { // 终止条件 if (n == 0) { return res; } // 尾递归调用 return tailRecur(n - 1, res + n); } ``` 尾递归的执行过程如图 2-5 所示。对比普通递归和尾递归,求和操作的执行点是不同的。 - **普通递归**:求和操作是在“归”的过程中执行的,每层返回后都要再执行一次求和操作。 - **尾递归**:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。 ![尾递归过程](iteration_and_recursion.assets/tail_recursion_sum.png)图 2-5 尾递归过程
!!! tip 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数是尾递归形式,但仍然可能会遇到栈溢出问题。 ### 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列”为例。 !!! question 给定一个斐波那契数列 $0, 1, 1, 2, 3, 5, 8, 13, \dots$ ,求该数列的第 $n$ 个数字。 设斐波那契数列的第 $n$ 个数字为 $f(n)$ ,易得两个结论。 - 数列的前两个数字为 $f(1) = 0$ 和 $f(2) = 1$ 。 - 数列中的每个数字是前两个数字的和,即 $f(n) = f(n - 1) + f(n - 2)$ 。 按照递推关系进行递归调用,将前两个数字作为终止条件,便可写出递归代码。调用 `fib(n)` 即可得到斐波那契数列的第 $n$ 个数字。 === "Python" ```python title="recursion.py" def fib(n: int) -> int: """斐波那契数列:递归""" # 终止条件 f(1) = 0, f(2) = 1 if n == 1 or n == 2: return n - 1 # 递归调用 f(n) = f(n-1) + f(n-2) res = fib(n - 1) + fib(n - 2) # 返回结果 f(n) return res ``` === "C++" ```cpp title="recursion.cpp" /* 斐波那契数列:递归 */ int fib(int n) { // 终止条件 f(1) = 0, f(2) = 1 if (n == 1 || n == 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) int res = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` === "Java" ```java title="recursion.java" /* 斐波那契数列:递归 */ int fib(int n) { // 终止条件 f(1) = 0, f(2) = 1 if (n == 1 || n == 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) int res = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` === "C#" ```csharp title="recursion.cs" /* 斐波那契数列:递归 */ int Fib(int n) { // 终止条件 f(1) = 0, f(2) = 1 if (n == 1 || n == 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) int res = Fib(n - 1) + Fib(n - 2); // 返回结果 f(n) return res; } ``` === "Go" ```go title="recursion.go" /* 斐波那契数列:递归 */ func fib(n int) int { // 终止条件 f(1) = 0, f(2) = 1 if n == 1 || n == 2 { return n - 1 } // 递归调用 f(n) = f(n-1) + f(n-2) res := fib(n-1) + fib(n-2) // 返回结果 f(n) return res } ``` === "Swift" ```swift title="recursion.swift" /* 斐波那契数列:递归 */ func fib(n: Int) -> Int { // 终止条件 f(1) = 0, f(2) = 1 if n == 1 || n == 2 { return n - 1 } // 递归调用 f(n) = f(n-1) + f(n-2) let res = fib(n: n - 1) + fib(n: n - 2) // 返回结果 f(n) return res } ``` === "JS" ```javascript title="recursion.js" /* 斐波那契数列:递归 */ function fib(n) { // 终止条件 f(1) = 0, f(2) = 1 if (n === 1 || n === 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) const res = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` === "TS" ```typescript title="recursion.ts" /* 斐波那契数列:递归 */ function fib(n: number): number { // 终止条件 f(1) = 0, f(2) = 1 if (n === 1 || n === 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) const res = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` === "Dart" ```dart title="recursion.dart" /* 斐波那契数列:递归 */ int fib(int n) { // 终止条件 f(1) = 0, f(2) = 1 if (n == 1 || n == 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) int res = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` === "Rust" ```rust title="recursion.rs" /* 斐波那契数列:递归 */ fn fib(n: i32) -> i32 { // 终止条件 f(1) = 0, f(2) = 1 if n == 1 || n == 2 { return n - 1; } // 递归调用 f(n) = f(n-1) + f(n-2) let res = fib(n - 1) + fib(n - 2); // 返回结果 res } ``` === "C" ```c title="recursion.c" /* 斐波那契数列:递归 */ int fib(int n) { // 终止条件 f(1) = 0, f(2) = 1 if (n == 1 || n == 2) return n - 1; // 递归调用 f(n) = f(n-1) + f(n-2) int res = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` === "Zig" ```zig title="recursion.zig" // 斐波那契数列 fn fib(n: i32) i32 { // 终止条件 f(1) = 0, f(2) = 1 if (n == 1 or n == 2) { return n - 1; } // 递归调用 f(n) = f(n-1) + f(n-2) var res: i32 = fib(n - 1) + fib(n - 2); // 返回结果 f(n) return res; } ``` 观察以上代码,我们在函数内递归调用了两个函数,**这意味着从一个调用产生了两个调用分支**。如图 2-6 所示,这样不断递归调用下去,最终将产生一个层数为 $n$ 的「递归树 recursion tree」。 ![斐波那契数列的递归树](iteration_and_recursion.assets/recursion_tree.png)图 2-6 斐波那契数列的递归树
本质上看,递归体现“将问题分解为更小子问题”的思维范式,这种分治策略是至关重要的。 - 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略都直接或间接地应用这种思维方式。 - 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分析。 ## 2.2.3 两者对比 总结以上内容,如表 2-1 所示,迭代和递归在实现、性能和适用性上有所不同。表 2-1 迭代与递归特点对比