11.4. 快速排序¶
「快速排序 Quick Sort」是一种基于“分治思想”的排序算法,速度很快、应用很广。
快速排序的核心操作为「哨兵划分」,其目标为:选取数组某个元素为 基准数,将所有小于基准数的元素移动至其左边,大于基准数的元素移动至其右边。「哨兵划分」的实现流程为:
- 以数组最左端元素作为基准数,初始化两个指针
i
,j
指向数组两端; - 设置一个循环,每轮中使用
i
/j
分别寻找首个比基准数大 / 小的元素,并交换此两元素; - 不断循环步骤
2.
,直至i
,j
相遇时跳出,最终把基准数交换至两个子数组的分界线;
「哨兵划分」执行完毕后,原数组被划分成两个部分,即 左子数组 和 右子数组,且满足 左子数组任意元素 < 基准数 < 右子数组任意元素。因此,接下来我们只需要排序两个子数组即可。
快速排序的分治思想
哨兵划分的实质是将 一个长数组的排序问题 简化为 两个短数组的排序问题。
/* 元素交换 */
void swap(int[] nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
int partition(int[] nums, int left, int right) {
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 元素交换 */
void swap(vector<int>& nums, int i, int j) {
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
int partition(vector<int>& nums, int left, int right) {
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
""" 哨兵划分 """
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # 从右向左找首个小于基准数的元素
while i < j and nums[i] <= nums[left]:
i += 1 # 从左向右找首个大于基准数的元素
# 元素交换
nums[i], nums[j] = nums[j], nums[i]
# 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i # 返回基准数的索引
/* 哨兵划分 */
func (q *quickSort) partition(nums []int, left, right int) int {
// 以 nums[left] 作为基准数
i, j := left, right
for i < j {
for i < j && nums[j] >= nums[left] {
j-- // 从右向左找首个小于基准数的元素
}
for i < j && nums[i] <= nums[left] {
i++ // 从左向右找首个大于基准数的元素
}
// 元素交换
nums[i], nums[j] = nums[j], nums[i]
}
// 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i // 返回基准数的索引
}
/* 元素交换 */
swap(nums, i, j) {
let tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
partition(nums, left, right) {
// 以 nums[left] 作为基准数
let i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left]) {
j -= 1; // 从右向左找首个小于基准数的元素
}
while (i < j && nums[i] <= nums[left]) {
i += 1; // 从左向右找首个大于基准数的元素
}
// 元素交换
this.swap(nums, i, j); // 交换这两个元素
}
this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 元素交换 */
swap(nums: number[], i: number, j: number): void {
let tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
partition(nums: number[], left: number, right: number): number {
// 以 nums[left] 作为基准数
let i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left]) {
j -= 1; // 从右向左找首个小于基准数的元素
}
while (i < j && nums[i] <= nums[left]) {
i += 1; // 从左向右找首个大于基准数的元素
}
// 元素交换
this.swap(nums, i, j); // 交换这两个元素
}
this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 元素交换 */
void swap(int[] nums, int i, int j)
{
int tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
/* 哨兵划分 */
int partition(int[] nums, int left, int right)
{
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j)
{
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 元素交换 */
func swap(nums: inout [Int], i: Int, j: Int) {
let tmp = nums[i]
nums[i] = nums[j]
nums[j] = tmp
}
/* 哨兵划分 */
func partition(nums: inout [Int], left: Int, right: Int) -> Int {
// 以 nums[left] 作为基准数
var i = left
var j = right
while i < j {
while i < j, nums[j] >= nums[left] {
j -= 1 // 从右向左找首个小于基准数的元素
}
while i < j, nums[i] <= nums[left] {
i += 1 // 从左向右找首个大于基准数的元素
}
swap(nums: &nums, i: i, j: j) // 交换这两个元素
}
swap(nums: &nums, i: i, j: left) // 将基准数交换至两子数组的分界线
return i // 返回基准数的索引
}
// 元素交换
fn swap(nums: []i32, i: usize, j: usize) void {
var tmp = nums[i];
nums[i] = nums[j];
nums[j] = tmp;
}
// 哨兵划分
fn partition(nums: []i32, left: usize, right: usize) usize {
// 以 nums[left] 作为基准数
var i = left;
var j = right;
while (i < j) {
while (i < j and nums[j] >= nums[left]) j -= 1; // 从右向左找首个小于基准数的元素
while (i < j and nums[i] <= nums[left]) i += 1; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
11.4.1. 算法流程¶
- 首先,对数组执行一次「哨兵划分」,得到待排序的 左子数组 和 右子数组;
- 接下来,对 左子数组 和 右子数组 分别 递归执行「哨兵划分」……
- 直至子数组长度为 1 时 终止递归,即可完成对整个数组的排序;
观察发现,快速排序和「二分查找」的原理类似,都是以对数阶的时间复杂度来缩小处理区间。
Fig. 快速排序流程
/* 快速排序 */
func quickSort(nums: inout [Int], left: Int, right: Int) {
// 子数组长度为 1 时终止递归
if left >= right {
return
}
// 哨兵划分
let pivot = partition(nums: &nums, left: left, right: right)
// 递归左子数组、右子数组
quickSort(nums: &nums, left: left, right: pivot - 1)
quickSort(nums: &nums, left: pivot + 1, right: right)
}
11.4.2. 算法特性¶
平均时间复杂度 \(O(n \log n)\) :平均情况下,哨兵划分的递归层数为 \(\log n\) ,每层中的总循环数为 \(n\) ,总体使用 \(O(n \log n)\) 时间。
最差时间复杂度 \(O(n^2)\) :最差情况下,哨兵划分操作将长度为 \(n\) 的数组划分为长度为 \(0\) 和 \(n - 1\) 的两个子数组,此时递归层数达到 \(n\) 层,每层中的循环数为 \(n\) ,总体使用 \(O(n^2)\) 时间。
空间复杂度 \(O(n)\) :输入数组完全倒序下,达到最差递归深度 \(n\) 。
原地排序:只在递归中使用 \(O(\log n)\) 大小的栈帧空间。
非稳定排序:哨兵划分操作可能改变相等元素的相对位置。
自适应排序:最差情况下,时间复杂度劣化至 \(O(n^2)\) 。
11.4.3. 快排为什么快?¶
从命名能够看出,快速排序在效率方面一定“有两把刷子”。快速排序的平均时间复杂度虽然与「归并排序」和「堆排序」一致,但实际 效率更高,这是因为:
- 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 \(O(n^2)\) ,不如归并排序,但绝大部分情况下,快速排序可以达到 \(O(n \log n)\) 的复杂度。
- 缓存使用效率高:哨兵划分操作时,将整个子数组加载入缓存中,访问元素效率很高。而诸如「堆排序」需要跳跃式访问元素,因此不具有此特性。
- 复杂度的常数系数低:在提及的三种算法中,快速排序的 比较、赋值、交换 三种操作的总体数量最少(类似于「插入排序」快于「冒泡排序」的原因)。
11.4.4. 基准数优化¶
普通快速排序在某些输入下的时间效率变差。举个极端例子,假设输入数组是完全倒序的,由于我们选取最左端元素为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,从而 左子数组长度为 \(n - 1\)、右子数组长度为 \(0\) 。这样进一步递归下去,每轮哨兵划分后的右子数组长度都为 \(0\) ,分治策略失效,快速排序退化为「冒泡排序」了。
为了尽量避免这种情况发生,我们可以优化一下基准数的选取策略。首先,在哨兵划分中,我们可以 随机选取一个元素作为基准数。但如果运气很差,每次都选择到比较差的基准数,那么效率依然不好。
进一步地,我们可以在数组中选取 3 个候选元素(一般为数组的首、尾、中点元素),并将三个候选元素的中位数作为基准数,这样基准数“既不大也不小”的概率就大大提升了。当然,如果数组很长的话,我们也可以选取更多候选元素,来进一步提升算法的稳健性。采取该方法后,时间复杂度劣化至 \(O(n^2)\) 的概率极低。
/* 选取三个元素的中位数 */
int medianThree(int[] nums, int left, int mid, int right) {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
return left;
else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
return mid;
else
return right;
}
/* 哨兵划分(三数取中值) */
int partition(int[] nums, int left, int right) {
// 选取三个候选元素的中位数
int med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
swap(nums, left, med);
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 选取三个元素的中位数 */
int medianThree(vector<int>& nums, int left, int mid, int right) {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
return left;
else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
return mid;
else
return right;
}
/* 哨兵划分(三数取中值) */
int partition(vector<int>& nums, int left, int right) {
// 选取三个候选元素的中位数
int med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
swap(nums, left, med);
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
""" 选取三个元素的中位数 """
def median_three(self, nums, left, mid, right):
# 此处使用异或运算来简化代码
# 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if (nums[left] < nums[mid]) ^ (nums[left] < nums[right]):
return left
elif (nums[mid] < nums[left]) ^ (nums[mid] < nums[right]):
return mid
return right
""" 哨兵划分(三数取中值) """
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
med = self.median_three(nums, left, (left + right) // 2, right)
# 将中位数交换至数组最左端
nums[left], nums[med] = nums[med], nums[left]
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # 从右向左找首个小于基准数的元素
while i < j and nums[i] <= nums[left]:
i += 1 # 从左向右找首个大于基准数的元素
# 元素交换
nums[i], nums[j] = nums[j], nums[i]
# 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i # 返回基准数的索引
/* 选取三个元素的中位数 */
func (q *quickSortMedian) medianThree(nums []int, left, mid, right int) int {
// 此处使用异或运算来简化代码(!= 在这里起到异或的作用)
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {
return left
} else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {
return mid
}
return right
}
/* 哨兵划分(三数取中值)*/
func (q *quickSortMedian) partition(nums []int, left, right int) int {
// 以 nums[left] 作为基准数
med := q.medianThree(nums, left, (left+right)/2, right)
// 将中位数交换至数组最左端
nums[left], nums[med] = nums[med], nums[left]
// 以 nums[left] 作为基准数
i, j := left, right
for i < j {
for i < j && nums[j] >= nums[left] {
j-- //从右向左找首个小于基准数的元素
}
for i < j && nums[i] <= nums[left] {
i++ //从左向右找首个大于基准数的元素
}
//元素交换
nums[i], nums[j] = nums[j], nums[i]
}
//将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i //返回基准数的索引
}
/* 选取三个元素的中位数 */
medianThree(nums, left, mid, right) {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right])) return left;
else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right])) return mid;
else return right;
}
/* 哨兵划分(三数取中值) */
partition(nums, left, right) {
// 选取三个候选元素的中位数
let med = this.medianThree(nums, left, Math.floor((left + right) / 2), right);
// 将中位数交换至数组最左端
this.swap(nums, left, med);
// 以 nums[left] 作为基准数
let i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left]) j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left]) i++; // 从左向右找首个大于基准数的元素
this.swap(nums, i, j); // 交换这两个元素
}
this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 选取三个元素的中位数 */
medianThree(nums: number[], left: number, mid: number, right: number): number {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if (Number(nums[left] < nums[mid]) ^ Number(nums[left] < nums[right])) {
return left;
} else if (Number(nums[mid] < nums[left]) ^ Number(nums[mid] < nums[right])) {
return mid;
} else {
return right;
}
}
/* 哨兵划分(三数取中值) */
partition(nums: number[], left: number, right: number): number {
// 选取三个候选元素的中位数
let med = this.medianThree(nums, left, Math.floor((left + right) / 2), right);
// 将中位数交换至数组最左端
this.swap(nums, left, med);
// 以 nums[left] 作为基准数
let i = left, j = right;
while (i < j) {
while (i < j && nums[j] >= nums[left]) {
j--; // 从右向左找首个小于基准数的元素
}
while (i < j && nums[i] <= nums[left]) {
i++; // 从左向右找首个大于基准数的元素
}
this.swap(nums, i, j); // 交换这两个元素
}
this.swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 选取三个元素的中位数 */
int medianThree(int[] nums, int left, int mid, int right)
{
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
return left;
else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
return mid;
else
return right;
}
/* 哨兵划分(三数取中值) */
int partition(int[] nums, int left, int right)
{
// 选取三个候选元素的中位数
int med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
swap(nums, left, med);
// 以 nums[left] 作为基准数
int i = left, j = right;
while (i < j)
{
while (i < j && nums[j] >= nums[left])
j--; // 从右向左找首个小于基准数的元素
while (i < j && nums[i] <= nums[left])
i++; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
/* 选取三个元素的中位数 */
func medianThree(nums: [Int], left: Int, mid: Int, right: Int) -> Int {
if (nums[left] < nums[mid]) != (nums[left] < nums[right]) {
return left
} else if (nums[mid] < nums[left]) != (nums[mid] < nums[right]) {
return mid
} else {
return right
}
}
/* 哨兵划分(三数取中值) */
func partitionMedian(nums: inout [Int], left: Int, right: Int) -> Int {
// 选取三个候选元素的中位数
let med = medianThree(nums: nums, left: left, mid: (left + right) / 2, right: right)
// 将中位数交换至数组最左端
swap(nums: &nums, i: left, j: med)
return partition(nums: &nums, left: left, right: right)
}
// 选取三个元素的中位数
fn medianThree(nums: []i32, left: usize, mid: usize, right: usize) usize {
// 此处使用异或运算来简化代码
// 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
if ((nums[left] < nums[mid]) != (nums[left] < nums[right])) {
return left;
} else if ((nums[mid] < nums[left]) != (nums[mid] < nums[right])) {
return mid;
} else {
return right;
}
}
// 哨兵划分(三数取中值)
fn partition(nums: []i32, left: usize, right: usize) usize {
// 选取三个候选元素的中位数
var med = medianThree(nums, left, (left + right) / 2, right);
// 将中位数交换至数组最左端
swap(nums, left, med);
// 以 nums[left] 作为基准数
var i = left;
var j = right;
while (i < j) {
while (i < j and nums[j] >= nums[left]) j -= 1; // 从右向左找首个小于基准数的元素
while (i < j and nums[i] <= nums[left]) i += 1; // 从左向右找首个大于基准数的元素
swap(nums, i, j); // 交换这两个元素
}
swap(nums, i, left); // 将基准数交换至两子数组的分界线
return i; // 返回基准数的索引
}
11.4.5. 尾递归优化¶
普通快速排序在某些输入下的空间效率变差。仍然以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 0 ,那么将形成一个高度为 \(n - 1\) 的递归树,此时使用的栈帧空间大小劣化至 \(O(n)\) 。
为了避免栈帧空间的累积,我们可以在每轮哨兵排序完成后,判断两个子数组的长度大小,仅递归排序较短的子数组。由于较短的子数组长度不会超过 \(\frac{n}{2}\) ,因此这样做能保证递归深度不超过 \(\log n\) ,即最差空间复杂度被优化至 \(O(\log n)\) 。
/* 快速排序(尾递归优化) */
void quickSort(int[] nums, int left, int right) {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
int pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
} else {
quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
}
}
}
/* 快速排序(尾递归优化) */
void quickSort(vector<int>& nums, int left, int right) {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
int pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
} else {
quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
}
}
}
""" 快速排序(尾递归优化) """
def quick_sort(self, nums, left, right):
# 子数组长度为 1 时终止
while left < right:
# 哨兵划分操作
pivot = self.partition(nums, left, right)
# 对两个子数组中较短的那个执行快排
if pivot - left < right - pivot:
self.quick_sort(nums, left, pivot - 1) # 递归排序左子数组
left = pivot + 1 # 剩余待排序区间为 [pivot + 1, right]
else:
self.quick_sort(nums, pivot + 1, right) # 递归排序右子数组
right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1]
/* 快速排序(尾递归优化)*/
func (q *quickSortTailCall) quickSort(nums []int, left, right int) {
// 子数组长度为 1 时终止
for left < right {
// 哨兵划分操作
pivot := q.partition(nums, left, right)
// 对两个子数组中较短的那个执行快排
if pivot-left < right-pivot {
q.quickSort(nums, left, pivot-1) // 递归排序左子数组
left = pivot + 1 // 剩余待排序区间为 [pivot + 1, right]
} else {
q.quickSort(nums, pivot+1, right) // 递归排序右子数组
right = pivot - 1 // 剩余待排序区间为 [left, pivot - 1]
}
}
}
/* 快速排序(尾递归优化) */
quickSort(nums, left, right) {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
let pivot = this.partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
this.quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
} else {
this.quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
}
}
}
/* 快速排序(尾递归优化) */
quickSort(nums: number[], left: number, right: number): void {
// 子数组长度为 1 时终止
while (left < right) {
// 哨兵划分操作
let pivot = this.partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
this.quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
} else {
this.quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
}
}
}
/* 快速排序(尾递归优化) */
void quickSort(int[] nums, int left, int right)
{
// 子数组长度为 1 时终止
while (left < right)
{
// 哨兵划分操作
int pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot)
{
quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
}
else
{
quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
}
}
}
/* 快速排序(尾递归优化) */
func quickSortTailCall(nums: inout [Int], left: Int, right: Int) {
var left = left
var right = right
// 子数组长度为 1 时终止
while left < right {
// 哨兵划分操作
let pivot = partition(nums: &nums, left: left, right: right)
// 对两个子数组中较短的那个执行快排
if (pivot - left) < (right - pivot) {
quickSortTailCall(nums: &nums, left: left, right: pivot - 1) // 递归排序左子数组
left = pivot + 1 // 剩余待排序区间为 [pivot + 1, right]
} else {
quickSortTailCall(nums: &nums, left: pivot + 1, right: right) // 递归排序右子数组
right = pivot - 1 // 剩余待排序区间为 [left, pivot - 1]
}
}
}
// 快速排序(尾递归优化)
fn quickSort(nums: []i32, left_: usize, right_: usize) void {
var left = left_;
var right = right_;
// 子数组长度为 1 时终止递归
while (left < right) {
// 哨兵划分操作
var pivot = partition(nums, left, right);
// 对两个子数组中较短的那个执行快排
if (pivot - left < right - pivot) {
quickSort(nums, left, pivot - 1); // 递归排序左子数组
left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right]
} else {
quickSort(nums, pivot + 1, right); // 递归排序右子数组
right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1]
}
}
}