--- comments: true --- # 13.3   子集和问题 ## 13.3.1   无重复元素的情况 !!! question 给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。给定数组无重复元素,每个元素可以被选取多次。请以列表形式返回这些组合,列表中不应包含重复组合。 例如,输入集合 $\{3, 4, 5\}$ 和目标整数 $9$ ,解为 $\{3, 3, 3\}, \{4, 5\}$ 。需要注意以下两点。 - 输入集合中的元素可以被无限次重复选取。 - 子集是不区分元素顺序的,比如 $\{4, 5\}$ 和 $\{5, 4\}$ 是同一个子集。 ### 1.   参考全排列解法 类似于全排列问题,我们可以把子集的生成过程想象成一系列选择的结果,并在选择过程中实时更新“元素和”,当元素和等于 `target` 时,就将子集记录至结果列表。 而与全排列问题不同的是,**本题集合中的元素可以被无限次选取**,因此无须借助 `selected` 布尔列表来记录元素是否已被选择。我们可以对全排列代码进行小幅修改,初步得到解题代码。 === "Python" ```python title="subset_sum_i_naive.py" def backtrack( state: list[int], target: int, total: int, choices: list[int], res: list[list[int]], ): """回溯算法:子集和 I""" # 子集和等于 target 时,记录解 if total == target: res.append(list(state)) return # 遍历所有选择 for i in range(len(choices)): # 剪枝:若子集和超过 target ,则跳过该选择 if total + choices[i] > target: continue # 尝试:做出选择,更新元素和 total state.append(choices[i]) # 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res) # 回退:撤销选择,恢复到之前的状态 state.pop() def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]: """求解子集和 I(包含重复子集)""" state = [] # 状态(子集) total = 0 # 子集和 res = [] # 结果列表(子集列表) backtrack(state, target, total, nums, res) return res ``` === "C++" ```cpp title="subset_sum_i_naive.cpp" /* 回溯算法:子集和 I */ void backtrack(vector &state, int target, int total, vector &choices, vector> &res) { // 子集和等于 target 时,记录解 if (total == target) { res.push_back(state); return; } // 遍历所有选择 for (size_t i = 0; i < choices.size(); i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.push_back(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop_back(); } } /* 求解子集和 I(包含重复子集) */ vector> subsetSumINaive(vector &nums, int target) { vector state; // 状态(子集) int total = 0; // 子集和 vector> res; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Java" ```java title="subset_sum_i_naive.java" /* 回溯算法:子集和 I */ void backtrack(List state, int target, int total, int[] choices, List> res) { // 子集和等于 target 时,记录解 if (total == target) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 for (int i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.add(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 I(包含重复子集) */ List> subsetSumINaive(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) int total = 0; // 子集和 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "C#" ```csharp title="subset_sum_i_naive.cs" /* 回溯算法:子集和 I */ void Backtrack(List state, int target, int total, int[] choices, List> res) { // 子集和等于 target 时,记录解 if (total == target) { res.Add(new List(state)); return; } // 遍历所有选择 for (int i = 0; i < choices.Length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.Add(choices[i]); // 进行下一轮选择 Backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.RemoveAt(state.Count - 1); } } /* 求解子集和 I(包含重复子集) */ List> SubsetSumINaive(int[] nums, int target) { List state = new(); // 状态(子集) int total = 0; // 子集和 List> res = new(); // 结果列表(子集列表) Backtrack(state, target, total, nums, res); return res; } ``` === "Go" ```go title="subset_sum_i_naive.go" /* 回溯算法:子集和 I */ func backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) { // 子集和等于 target 时,记录解 if target == total { newState := append([]int{}, *state...) *res = append(*res, newState) return } // 遍历所有选择 for i := 0; i < len(*choices); i++ { // 剪枝:若子集和超过 target ,则跳过该选择 if total+(*choices)[i] > target { continue } // 尝试:做出选择,更新元素和 total *state = append(*state, (*choices)[i]) // 进行下一轮选择 backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res) // 回退:撤销选择,恢复到之前的状态 *state = (*state)[:len(*state)-1] } } /* 求解子集和 I(包含重复子集) */ func subsetSumINaive(nums []int, target int) [][]int { state := make([]int, 0) // 状态(子集) total := 0 // 子集和 res := make([][]int, 0) // 结果列表(子集列表) backtrackSubsetSumINaive(total, target, &state, &nums, &res) return res } ``` === "Swift" ```swift title="subset_sum_i_naive.swift" /* 回溯算法:子集和 I */ func backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) { // 子集和等于 target 时,记录解 if total == target { res.append(state) return } // 遍历所有选择 for i in stride(from: 0, to: choices.count, by: 1) { // 剪枝:若子集和超过 target ,则跳过该选择 if total + choices[i] > target { continue } // 尝试:做出选择,更新元素和 total state.append(choices[i]) // 进行下一轮选择 backtrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res) // 回退:撤销选择,恢复到之前的状态 state.removeLast() } } /* 求解子集和 I(包含重复子集) */ func subsetSumINaive(nums: [Int], target: Int) -> [[Int]] { var state: [Int] = [] // 状态(子集) let total = 0 // 子集和 var res: [[Int]] = [] // 结果列表(子集列表) backtrack(state: &state, target: target, total: total, choices: nums, res: &res) return res } ``` === "JS" ```javascript title="subset_sum_i_naive.js" /* 回溯算法:子集和 I */ function backtrack(state, target, total, choices, res) { // 子集和等于 target 时,记录解 if (total === target) { res.push([...state]); return; } // 遍历所有选择 for (let i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.push(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I(包含重复子集) */ function subsetSumINaive(nums, target) { const state = []; // 状态(子集) const total = 0; // 子集和 const res = []; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "TS" ```typescript title="subset_sum_i_naive.ts" /* 回溯算法:子集和 I */ function backtrack( state: number[], target: number, total: number, choices: number[], res: number[][] ): void { // 子集和等于 target 时,记录解 if (total === target) { res.push([...state]); return; } // 遍历所有选择 for (let i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.push(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I(包含重复子集) */ function subsetSumINaive(nums: number[], target: number): number[][] { const state = []; // 状态(子集) const total = 0; // 子集和 const res = []; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Dart" ```dart title="subset_sum_i_naive.dart" /* 回溯算法:子集和 I */ void backtrack( List state, int target, int total, List choices, List> res, ) { // 子集和等于 target 时,记录解 if (total == target) { res.add(List.from(state)); return; } // 遍历所有选择 for (int i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.add(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.removeLast(); } } /* 求解子集和 I(包含重复子集) */ List> subsetSumINaive(List nums, int target) { List state = []; // 状态(子集) int total = 0; // 元素和 List> res = []; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Rust" ```rust title="subset_sum_i_naive.rs" /* 回溯算法:子集和 I */ fn backtrack(mut state: Vec, target: i32, total: i32, choices: &[i32], res: &mut Vec>) { // 子集和等于 target 时,记录解 if total == target { res.push(state); return; } // 遍历所有选择 for i in 0..choices.len() { // 剪枝:若子集和超过 target ,则跳过该选择 if total + choices[i] > target { continue; } // 尝试:做出选择,更新元素和 total state.push(choices[i]); // 进行下一轮选择 backtrack(state.clone(), target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I(包含重复子集) */ fn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec> { let state = Vec::new(); // 状态(子集) let total = 0; // 子集和 let mut res = Vec::new(); // 结果列表(子集列表) backtrack(state, target, total, nums, &mut res); res } ``` === "C" ```c title="subset_sum_i_naive.c" /* 回溯算法:子集和 I */ void backtrack(vector *state, int target, int total, vector *choices, vector *res) { // 子集和等于 target 时,记录解 if (total == target) { vector *tmpVector = newVector(); for (int i = 0; i < state->size; i++) { vectorPushback(tmpVector, state->data[i], sizeof(int)); } vectorPushback(res, tmpVector, sizeof(vector)); return; } // 遍历所有选择 for (size_t i = 0; i < choices->size; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + *(int *)(choices->data[i]) > target) { continue; } // 尝试:做出选择,更新元素和 total vectorPushback(state, choices->data[i], sizeof(int)); // 进行下一轮选择 backtrack(state, target, total + *(int *)(choices->data[i]), choices, res); // 回退:撤销选择,恢复到之前的状态 vectorPopback(state); } } /* 求解子集和 I(包含重复子集) */ vector *subsetSumINaive(vector *nums, int target) { vector *state = newVector(); // 状态(子集) int total = 0; // 子集和 vector *res = newVector(); // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Zig" ```zig title="subset_sum_i_naive.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` 向以上代码输入数组 $[3, 4, 5]$ 和目标元素 $9$ ,输出结果为 $[3, 3, 3], [4, 5], [5, 4]$ 。**虽然成功找出了所有和为 $9$ 的子集,但其中存在重复的子集 $[4, 5]$ 和 $[5, 4]$** 。 这是因为搜索过程是区分选择顺序的,然而子集不区分选择顺序。如图 13-10 所示,先选 $4$ 后选 $5$ 与先选 $5$ 后选 $4$ 是两个不同的分支,但两者对应同一个子集。 ![子集搜索与越界剪枝](subset_sum_problem.assets/subset_sum_i_naive.png)

图 13-10   子集搜索与越界剪枝

为了去除重复子集,**一种直接的思路是对结果列表进行去重**。但这个方法效率很低,有两方面原因。 - 当数组元素较多,尤其是当 `target` 较大时,搜索过程会产生大量的重复子集。 - 比较子集(数组)的异同非常耗时,需要先排序数组,再比较数组中每个元素的异同。 ### 2.   重复子集剪枝 **我们考虑在搜索过程中通过剪枝进行去重**。观察图 13-11 ,重复子集是在以不同顺序选择数组元素时产生的,例如以下情况。 1. 当第一轮和第二轮分别选择 $3$ 和 $4$ 时,会生成包含这两个元素的所有子集,记为 $[3, 4, \dots]$ 。 2. 之后,当第一轮选择 $4$ 时,**则第二轮应该跳过 $3$** ,因为该选择产生的子集 $[4, 3, \dots]$ 和 `1.` 中生成的子集完全重复。 在搜索中,每一层的选择都是从左到右被逐个尝试的,因此越靠右的分支被剪掉的越多。 1. 前两轮选择 $3$ 和 $5$ ,生成子集 $[3, 5, \dots]$ 。 2. 前两轮选择 $4$ 和 $5$ ,生成子集 $[4, 5, \dots]$ 。 3. 若第一轮选择 $5$ ,**则第二轮应该跳过 $3$ 和 $4$** ,因为子集 $[5, 3, \dots]$ 和 $[5, 4, \dots]$ 与第 `1.` 和 `2.` 步中描述的子集完全重复。 ![不同选择顺序导致的重复子集](subset_sum_problem.assets/subset_sum_i_pruning.png)

图 13-11   不同选择顺序导致的重复子集

总结来看,给定输入数组 $[x_1, x_2, \dots, x_n]$ ,设搜索过程中的选择序列为 $[x_{i_1}, x_{i_2}, \dots, x_{i_m}]$ ,则该选择序列需要满足 $i_1 \leq i_2 \leq \dots \leq i_m$ ,**不满足该条件的选择序列都会造成重复,应当剪枝**。 ### 3.   代码实现 为实现该剪枝,我们初始化变量 `start` ,用于指示遍历起点。**当做出选择 $x_{i}$ 后,设定下一轮从索引 $i$ 开始遍历**。这样做就可以让选择序列满足 $i_1 \leq i_2 \leq \dots \leq i_m$ ,从而保证子集唯一。 除此之外,我们还对代码进行了以下两项优化。 - 在开启搜索前,先将数组 `nums` 排序。在遍历所有选择时,**当子集和超过 `target` 时直接结束循环**,因为后边的元素更大,其子集和都一定会超过 `target` 。 - 省去元素和变量 `total` ,**通过在 `target` 上执行减法来统计元素和**,当 `target` 等于 $0$ 时记录解。 === "Python" ```python title="subset_sum_i.py" def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """回溯算法:子集和 I""" # 子集和等于 target 时,记录解 if target == 0: res.append(list(state)) return # 遍历所有选择 # 剪枝二:从 start 开始遍历,避免生成重复子集 for i in range(start, len(choices)): # 剪枝一:若子集和超过 target ,则直接结束循环 # 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0: break # 尝试:做出选择,更新 target, start state.append(choices[i]) # 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res) # 回退:撤销选择,恢复到之前的状态 state.pop() def subset_sum_i(nums: list[int], target: int) -> list[list[int]]: """求解子集和 I""" state = [] # 状态(子集) nums.sort() # 对 nums 进行排序 start = 0 # 遍历起始点 res = [] # 结果列表(子集列表) backtrack(state, target, nums, start, res) return res ``` === "C++" ```cpp title="subset_sum_i.cpp" /* 回溯算法:子集和 I */ void backtrack(vector &state, int target, vector &choices, int start, vector> &res) { // 子集和等于 target 时,记录解 if (target == 0) { res.push_back(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.size(); i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.push_back(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop_back(); } } /* 求解子集和 I */ vector> subsetSumI(vector &nums, int target) { vector state; // 状态(子集) sort(nums.begin(), nums.end()); // 对 nums 进行排序 int start = 0; // 遍历起始点 vector> res; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Java" ```java title="subset_sum_i.java" /* 回溯算法:子集和 I */ void backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 I */ List> subsetSumI(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) Arrays.sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "C#" ```csharp title="subset_sum_i.cs" /* 回溯算法:子集和 I */ void Backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.Add(new List(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.Length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.Add(choices[i]); // 进行下一轮选择 Backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.RemoveAt(state.Count - 1); } } /* 求解子集和 I */ List> SubsetSumI(int[] nums, int target) { List state = new(); // 状态(子集) Array.Sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new(); // 结果列表(子集列表) Backtrack(state, target, nums, start, res); return res; } ``` === "Go" ```go title="subset_sum_i.go" /* 回溯算法:子集和 I */ func backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) { // 子集和等于 target 时,记录解 if target == 0 { newState := append([]int{}, *state...) *res = append(*res, newState) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for i := start; i < len(*choices); i++ { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target-(*choices)[i] < 0 { break } // 尝试:做出选择,更新 target, start *state = append(*state, (*choices)[i]) // 进行下一轮选择 backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res) // 回退:撤销选择,恢复到之前的状态 *state = (*state)[:len(*state)-1] } } /* 求解子集和 I */ func subsetSumI(nums []int, target int) [][]int { state := make([]int, 0) // 状态(子集) sort.Ints(nums) // 对 nums 进行排序 start := 0 // 遍历起始点 res := make([][]int, 0) // 结果列表(子集列表) backtrackSubsetSumI(start, target, &state, &nums, &res) return res } ``` === "Swift" ```swift title="subset_sum_i.swift" /* 回溯算法:子集和 I */ func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) { // 子集和等于 target 时,记录解 if target == 0 { res.append(state) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for i in stride(from: start, to: choices.count, by: 1) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break } // 尝试:做出选择,更新 target, start state.append(choices[i]) // 进行下一轮选择 backtrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res) // 回退:撤销选择,恢复到之前的状态 state.removeLast() } } /* 求解子集和 I */ func subsetSumI(nums: [Int], target: Int) -> [[Int]] { var state: [Int] = [] // 状态(子集) let nums = nums.sorted() // 对 nums 进行排序 let start = 0 // 遍历起始点 var res: [[Int]] = [] // 结果列表(子集列表) backtrack(state: &state, target: target, choices: nums, start: start, res: &res) return res } ``` === "JS" ```javascript title="subset_sum_i.js" /* 回溯算法:子集和 I */ function backtrack(state, target, choices, start, res) { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I */ function subsetSumI(nums, target) { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "TS" ```typescript title="subset_sum_i.ts" /* 回溯算法:子集和 I */ function backtrack( state: number[], target: number, choices: number[], start: number, res: number[][] ): void { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I */ function subsetSumI(nums: number[], target: number): number[][] { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Dart" ```dart title="subset_sum_i.dart" /* 回溯算法:子集和 I */ void backtrack( List state, int target, List choices, int start, List> res, ) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(List.from(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.removeLast(); } } /* 求解子集和 I */ List> subsetSumI(List nums, int target) { List state = []; // 状态(子集) nums.sort(); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Rust" ```rust title="subset_sum_i.rs" /* 回溯算法:子集和 I */ fn backtrack(mut state: Vec, target: i32, choices: &[i32], start: usize, res: &mut Vec>) { // 子集和等于 target 时,记录解 if target == 0 { res.push(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for i in start..choices.len() { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state.clone(), target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I */ fn subset_sum_i(nums: &mut [i32], target: i32) -> Vec> { let state = Vec::new(); // 状态(子集) nums.sort(); // 对 nums 进行排序 let start = 0; // 遍历起始点 let mut res = Vec::new(); // 结果列表(子集列表) backtrack(state, target, nums, start, &mut res); res } ``` === "C" ```c title="subset_sum_i.c" /* 回溯算法:子集和 I */ void backtrack(vector *state, int target, vector *choices, int start, vector *res) { // 子集和等于 target 时,记录解 if (target == 0) { vector *tmpVector = newVector(); for (int i = 0; i < state->size; i++) { vectorPushback(tmpVector, state->data[i], sizeof(int)); } vectorPushback(res, tmpVector, sizeof(vector)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices->size; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (target - *(int *)(choices->data[i]) < 0) { break; } // 尝试:做出选择,更新 target, start vectorPushback(state, choices->data[i], sizeof(int)); // 进行下一轮选择 backtrack(state, target - *(int *)(choices->data[i]), choices, i, res); // 回退:撤销选择,恢复到之前的状态 vectorPopback(state); } } /* 求解子集和 I */ vector *subsetSumI(vector *nums, int target) { vector *state = newVector(); // 状态(子集) qsort(nums->data, nums->size, sizeof(int *), comp); // 对 nums 进行排序 int start = 0; // 子集和 vector *res = newVector(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Zig" ```zig title="subset_sum_i.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` 如图 13-12 所示,为将数组 $[3, 4, 5]$ 和目标元素 $9$ 输入到以上代码后的整体回溯过程。 ![子集和 I 回溯过程](subset_sum_problem.assets/subset_sum_i.png)

图 13-12   子集和 I 回溯过程

## 13.3.2   考虑重复元素的情况 !!! question 给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。**给定数组可能包含重复元素,每个元素只可被选择一次**。请以列表形式返回这些组合,列表中不应包含重复组合。 相比于上题,**本题的输入数组可能包含重复元素**,这引入了新的问题。例如,给定数组 $[4, \hat{4}, 5]$ 和目标元素 $9$ ,则现有代码的输出结果为 $[4, 5], [\hat{4}, 5]$ ,出现了重复子集。 **造成这种重复的原因是相等元素在某轮中被多次选择**。在图 13-13 中,第一轮共有三个选择,其中两个都为 $4$ ,会产生两个重复的搜索分支,从而输出重复子集;同理,第二轮的两个 $4$ 也会产生重复子集。 ![相等元素导致的重复子集](subset_sum_problem.assets/subset_sum_ii_repeat.png)

图 13-13   相等元素导致的重复子集

### 1.   相等元素剪枝 为解决此问题,**我们需要限制相等元素在每一轮中只被选择一次**。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。这意味着在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。 与此同时,**本题规定中的每个数组元素只能被选择一次**。幸运的是,我们也可以利用变量 `start` 来满足该约束:当做出选择 $x_{i}$ 后,设定下一轮从索引 $i + 1$ 开始向后遍历。这样即能去除重复子集,也能避免重复选择元素。 ### 2.   代码实现 === "Python" ```python title="subset_sum_ii.py" def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """回溯算法:子集和 II""" # 子集和等于 target 时,记录解 if target == 0: res.append(list(state)) return # 遍历所有选择 # 剪枝二:从 start 开始遍历,避免生成重复子集 # 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i in range(start, len(choices)): # 剪枝一:若子集和超过 target ,则直接结束循环 # 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0: break # 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start and choices[i] == choices[i - 1]: continue # 尝试:做出选择,更新 target, start state.append(choices[i]) # 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res) # 回退:撤销选择,恢复到之前的状态 state.pop() def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]: """求解子集和 II""" state = [] # 状态(子集) nums.sort() # 对 nums 进行排序 start = 0 # 遍历起始点 res = [] # 结果列表(子集列表) backtrack(state, target, nums, start, res) return res ``` === "C++" ```cpp title="subset_sum_ii.cpp" /* 回溯算法:子集和 II */ void backtrack(vector &state, int target, vector &choices, int start, vector> &res) { // 子集和等于 target 时,记录解 if (target == 0) { res.push_back(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.size(); i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.push_back(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.pop_back(); } } /* 求解子集和 II */ vector> subsetSumII(vector &nums, int target) { vector state; // 状态(子集) sort(nums.begin(), nums.end()); // 对 nums 进行排序 int start = 0; // 遍历起始点 vector> res; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Java" ```java title="subset_sum_ii.java" /* 回溯算法:子集和 II */ void backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 II */ List> subsetSumII(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) Arrays.sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "C#" ```csharp title="subset_sum_ii.cs" /* 回溯算法:子集和 II */ void Backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.Add(new List(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.Length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.Add(choices[i]); // 进行下一轮选择 Backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.RemoveAt(state.Count - 1); } } /* 求解子集和 II */ List> SubsetSumII(int[] nums, int target) { List state = new(); // 状态(子集) Array.Sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new(); // 结果列表(子集列表) Backtrack(state, target, nums, start, res); return res; } ``` === "Go" ```go title="subset_sum_ii.go" /* 回溯算法:子集和 II */ func backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) { // 子集和等于 target 时,记录解 if target == 0 { newState := append([]int{}, *state...) *res = append(*res, newState) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i := start; i < len(*choices); i++ { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target-(*choices)[i] < 0 { break } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start && (*choices)[i] == (*choices)[i-1] { continue } // 尝试:做出选择,更新 target, start *state = append(*state, (*choices)[i]) // 进行下一轮选择 backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res) // 回退:撤销选择,恢复到之前的状态 *state = (*state)[:len(*state)-1] } } /* 求解子集和 II */ func subsetSumII(nums []int, target int) [][]int { state := make([]int, 0) // 状态(子集) sort.Ints(nums) // 对 nums 进行排序 start := 0 // 遍历起始点 res := make([][]int, 0) // 结果列表(子集列表) backtrackSubsetSumII(start, target, &state, &nums, &res) return res } ``` === "Swift" ```swift title="subset_sum_ii.swift" /* 回溯算法:子集和 II */ func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) { // 子集和等于 target 时,记录解 if target == 0 { res.append(state) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i in stride(from: start, to: choices.count, by: 1) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start, choices[i] == choices[i - 1] { continue } // 尝试:做出选择,更新 target, start state.append(choices[i]) // 进行下一轮选择 backtrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res) // 回退:撤销选择,恢复到之前的状态 state.removeLast() } } /* 求解子集和 II */ func subsetSumII(nums: [Int], target: Int) -> [[Int]] { var state: [Int] = [] // 状态(子集) let nums = nums.sorted() // 对 nums 进行排序 let start = 0 // 遍历起始点 var res: [[Int]] = [] // 结果列表(子集列表) backtrack(state: &state, target: target, choices: nums, start: start, res: &res) return res } ``` === "JS" ```javascript title="subset_sum_ii.js" /* 回溯算法:子集和 II */ function backtrack(state, target, choices, start, res) { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] === choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 II */ function subsetSumII(nums, target) { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "TS" ```typescript title="subset_sum_ii.ts" /* 回溯算法:子集和 II */ function backtrack( state: number[], target: number, choices: number[], start: number, res: number[][] ): void { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] === choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 II */ function subsetSumII(nums: number[], target: number): number[][] { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Dart" ```dart title="subset_sum_ii.dart" /* 回溯算法:子集和 II */ void backtrack( List state, int target, List choices, int start, List> res, ) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(List.from(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.removeLast(); } } /* 求解子集和 II */ List> subsetSumII(List nums, int target) { List state = []; // 状态(子集) nums.sort(); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Rust" ```rust title="subset_sum_ii.rs" /* 回溯算法:子集和 II */ fn backtrack(mut state: Vec, target: i32, choices: &[i32], start: usize, res: &mut Vec>) { // 子集和等于 target 时,记录解 if target == 0 { res.push(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i in start..choices.len() { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start && choices[i] == choices[i - 1] { continue; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state.clone(), target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 II */ fn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec> { let state = Vec::new(); // 状态(子集) nums.sort(); // 对 nums 进行排序 let start = 0; // 遍历起始点 let mut res = Vec::new(); // 结果列表(子集列表) backtrack(state, target, nums, start, &mut res); res } ``` === "C" ```c title="subset_sum_ii.c" /* 回溯算法:子集和 II */ void backtrack(vector *state, int target, vector *choices, int start, vector *res) { // 子集和等于 target 时,记录解 if (target == 0) { vector *tmpVector = newVector(); for (int i = 0; i < state->size; i++) { vectorPushback(tmpVector, state->data[i], sizeof(int)); } vectorPushback(res, tmpVector, sizeof(vector)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices->size; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - *(int *)(choices->data[i]) < 0) { continue; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && *(int *)(choices->data[i]) == *(int *)(choices->data[i - 1])) { continue; } // 尝试:做出选择,更新 target, start vectorPushback(state, choices->data[i], sizeof(int)); // 进行下一轮选择 backtrack(state, target - *(int *)(choices->data[i]), choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 vectorPopback(state); } } /* 求解子集和 II */ vector *subsetSumII(vector *nums, int target) { vector *state = newVector(); // 状态(子集) qsort(nums->data, nums->size, sizeof(int *), comp); // 对 nums 进行排序 int start = 0; // 子集和 vector *res = newVector(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Zig" ```zig title="subset_sum_ii.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` 图 13-14 展示了数组 $[4, 4, 5]$ 和目标元素 $9$ 的回溯过程,共包含四种剪枝操作。请你将图示与代码注释相结合,理解整个搜索过程,以及每种剪枝操作是如何工作的。 ![子集和 II 回溯过程](subset_sum_problem.assets/subset_sum_ii.png)

图 13-14   子集和 II 回溯过程