12.3 构建二叉树问题¶
Question
给定一个二叉树的前序遍历 preorder
和中序遍历 inorder
,请从中构建二叉树,返回二叉树的根节点。
图 12-5 构建二叉树的示例数据
1. 判断是否为分治问题¶
原问题定义为从 preorder
和 inorder
构建二叉树,其是一个典型的分治问题。
- 问题可以被分解:从分治的角度切入,我们可以将原问题划分为两个子问题:构建左子树、构建右子树,加上一步操作:初始化根节点。而对于每个子树(子问题),我们仍然可以复用以上划分方法,将其划分为更小的子树(子问题),直至达到最小子问题(空子树)时终止。
- 子问题是独立的:左子树和右子树是相互独立的,它们之间没有交集。在构建左子树时,我们只需要关注中序遍历和前序遍历中与左子树对应的部分。右子树同理。
- 子问题的解可以合并:一旦得到了左子树和右子树(子问题的解),我们就可以将它们链接到根节点上,得到原问题的解。
2. 如何划分子树¶
根据以上分析,这道题是可以使用分治来求解的,但如何通过前序遍历 preorder
和中序遍历 inorder
来划分左子树和右子树呢?
根据定义,preorder
和 inorder
都可以被划分为三个部分。
- 前序遍历:
[ 根节点 | 左子树 | 右子树 ]
,例如图 12-5 的树对应[ 3 | 9 | 2 1 7 ]
。 - 中序遍历:
[ 左子树 | 根节点 | 右子树 ]
,例如图 12-5 的树对应[ 9 | 3 | 1 2 7 ]
。
以上图数据为例,我们可以通过图 12-6 所示的步骤得到划分结果。
- 前序遍历的首元素 3 是根节点的值。
- 查找根节点 3 在
inorder
中的索引,利用该索引可将inorder
划分为[ 9 | 3 | 1 2 7 ]
。 - 根据
inorder
划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将preorder
划分为[ 3 | 9 | 2 1 7 ]
。
图 12-6 在前序和中序遍历中划分子树
3. 基于变量描述子树区间¶
根据以上划分方法,我们已经得到根节点、左子树、右子树在 preorder
和 inorder
中的索引区间。而为了描述这些索引区间,我们需要借助几个指针变量。
- 将当前树的根节点在
preorder
中的索引记为 \(i\) 。 - 将当前树的根节点在
inorder
中的索引记为 \(m\) 。 - 将当前树在
inorder
中的索引区间记为 \([l, r]\) 。
如表 12-1 所示,通过以上变量即可表示根节点在 preorder
中的索引,以及子树在 inorder
中的索引区间。
表 12-1 根节点和子树在前序和中序遍历中的索引
根节点在 preorder 中的索引 |
子树在 inorder 中的索引区间 |
|
---|---|---|
当前树 | \(i\) | \([l, r]\) |
左子树 | \(i + 1\) | \([l, m-1]\) |
右子树 | \(i + 1 + (m - l)\) | \([m+1, r]\) |
请注意,右子树根节点索引中的 \((m-l)\) 的含义是“左子树的节点数量”,建议配合图 12-7 理解。
图 12-7 根节点和左右子树的索引区间表示
4. 代码实现¶
为了提升查询 \(m\) 的效率,我们借助一个哈希表 hmap
来存储数组 inorder
中元素到索引的映射。
/* 构建二叉树:分治 */
TreeNode dfs(int[] preorder, int[] inorder, Map<Integer, Integer> hmap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return null;
// 初始化根节点
TreeNode root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = hmap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode buildTree(int[] preorder, int[] inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Map<Integer, Integer> hmap = new HashMap<>();
for (int i = 0; i < inorder.length; i++) {
hmap.put(inorder[i], i);
}
TreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);
return root;
}
/* 构建二叉树:分治 */
TreeNode *dfs(vector<int> &preorder, vector<int> &inorder, unordered_map<int, int> &hmap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return NULL;
// 初始化根节点
TreeNode *root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = hmap[preorder[i]];
// 子问题:构建左子树
root->left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root->right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
unordered_map<int, int> hmap;
for (int i = 0; i < inorder.size(); i++) {
hmap[inorder[i]] = i;
}
TreeNode *root = dfs(preorder, inorder, hmap, 0, 0, inorder.size() - 1);
return root;
}
def dfs(
preorder: list[int],
inorder: list[int],
hmap: dict[int, int],
i: int,
l: int,
r: int,
) -> TreeNode | None:
"""构建二叉树:分治"""
# 子树区间为空时终止
if r - l < 0:
return None
# 初始化根节点
root = TreeNode(preorder[i])
# 查询 m ,从而划分左右子树
m = hmap[preorder[i]]
# 子问题:构建左子树
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1)
# 子问题:构建右子树
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r)
# 返回根节点
return root
def build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:
"""构建二叉树"""
# 初始化哈希表,存储 inorder 元素到索引的映射
hmap = {val: i for i, val in enumerate(inorder)}
root = dfs(preorder, inorder, hmap, 0, 0, len(inorder) - 1)
return root
/* 构建二叉树:分治 */
func dfsBuildTree(preorder, inorder []int, hmap map[int]int, i, l, r int) *TreeNode {
// 子树区间为空时终止
if r-l < 0 {
return nil
}
// 初始化根节点
root := NewTreeNode(preorder[i])
// 查询 m ,从而划分左右子树
m := hmap[preorder[i]]
// 子问题:构建左子树
root.Left = dfsBuildTree(preorder, inorder, hmap, i+1, l, m-1)
// 子问题:构建右子树
root.Right = dfsBuildTree(preorder, inorder, hmap, i+1+m-l, m+1, r)
// 返回根节点
return root
}
/* 构建二叉树 */
func buildTree(preorder, inorder []int) *TreeNode {
// 初始化哈希表,存储 inorder 元素到索引的映射
hmap := make(map[int]int, len(inorder))
for i := 0; i < len(inorder); i++ {
hmap[inorder[i]] = i
}
root := dfsBuildTree(preorder, inorder, hmap, 0, 0, len(inorder)-1)
return root
}
/* 构建二叉树:分治 */
function dfs(preorder, inorder, hmap, i, l, r) {
// 子树区间为空时终止
if (r - l < 0) return null;
// 初始化根节点
const root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
const m = hmap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
function buildTree(preorder, inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
let hmap = new Map();
for (let i = 0; i < inorder.length; i++) {
hmap.set(inorder[i], i);
}
const root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);
return root;
}
/* 构建二叉树:分治 */
function dfs(
preorder: number[],
inorder: number[],
hmap: Map<number, number>,
i: number,
l: number,
r: number
): TreeNode | null {
// 子树区间为空时终止
if (r - l < 0) return null;
// 初始化根节点
const root: TreeNode = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
const m = hmap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
// 初始化哈希表,存储 inorder 元素到索引的映射
let hmap = new Map<number, number>();
for (let i = 0; i < inorder.length; i++) {
hmap.set(inorder[i], i);
}
const root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);
return root;
}
/* 构建二叉树:分治 */
TreeNode dfs(int[] preorder, int[] inorder, Dictionary<int, int> hmap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return null;
// 初始化根节点
TreeNode root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = hmap[preorder[i]];
// 子问题:构建左子树
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode buildTree(int[] preorder, int[] inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Dictionary<int, int> hmap = new Dictionary<int, int>();
for (int i = 0; i < inorder.Length; i++) {
hmap.TryAdd(inorder[i], i);
}
TreeNode root = dfs(preorder, inorder, hmap, 0, 0, inorder.Length - 1);
return root;
}
/* 构建二叉树:分治 */
TreeNode? dfs(
List<int> preorder,
List<int> inorder,
Map<int, int> hmap,
int i,
int l,
int r,
) {
// 子树区间为空时终止
if (r - l < 0) {
return null;
}
// 初始化根节点
TreeNode? root = TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = hmap[preorder[i]]!;
// 子问题:构建左子树
root.left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode? buildTree(List<int> preorder, List<int> inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Map<int, int> hmap = {};
for (int i = 0; i < inorder.length; i++) {
hmap[inorder[i]] = i;
}
TreeNode? root = dfs(preorder, inorder, hmap, 0, 0, inorder.length - 1);
return root;
}
/* 构建二叉树:分治 */
fn dfs(preorder: &[i32], inorder: &[i32], hmap: &HashMap<i32, i32>, i: i32, l: i32, r: i32) -> Option<Rc<RefCell<TreeNode>>> {
// 子树区间为空时终止
if r - l < 0 { return None; }
// 初始化根节点
let root = TreeNode::new(preorder[i as usize]);
// 查询 m ,从而划分左右子树
let m = hmap.get(&preorder[i as usize]).unwrap();
// 子问题:构建左子树
root.borrow_mut().left = dfs(preorder, inorder, hmap, i + 1, l, m - 1);
// 子问题:构建右子树
root.borrow_mut().right = dfs(preorder, inorder, hmap, i + 1 + m - l, m + 1, r);
// 返回根节点
Some(root)
}
/* 构建二叉树 */
fn build_tree(preorder: &[i32], inorder: &[i32]) -> Option<Rc<RefCell<TreeNode>>> {
// 初始化哈希表,存储 inorder 元素到索引的映射
let mut hmap: HashMap<i32, i32> = HashMap::new();
for i in 0..inorder.len() {
hmap.insert(inorder[i], i as i32);
}
let root = dfs(preorder, inorder, &hmap, 0, 0, inorder.len() as i32 - 1);
root
}
图 12-8 展示了构建二叉树的递归过程,各个节点是在向下“递”的过程中建立的,而各条边(即引用)是在向上“归”的过程中建立的。
图 12-8 构建二叉树的递归过程
每个递归函数内的前序遍历 preorder
和中序遍历 inorder
的划分结果如图 12-9 所示。
图 12-9 每个递归函数中的划分结果
设树的节点数量为 \(n\) ,初始化每一个节点(执行一个递归函数 dfs()
)使用 \(O(1)\) 时间。因此总体时间复杂度为 \(O(n)\) 。
哈希表存储 inorder
元素到索引的映射,空间复杂度为 \(O(n)\) 。最差情况下,即二叉树退化为链表时,递归深度达到 \(n\) ,使用 \(O(n)\) 的栈帧空间。因此总体空间复杂度为 \(O(n)\) 。