/** * File: time_complexity.cs * Created Time: 2022-12-23 * Author: haptear (haptear@hotmail.com) */ using NUnit.Framework; namespace hello_algo.chapter_computational_complexity { public class time_complexity { void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { Console.WriteLine(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { Console.WriteLine(0); } } } // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { Console.WriteLine(0); } // 算法 B 时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { Console.WriteLine(0); } } // 算法 C 时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { Console.WriteLine(0); } } /* 常数阶 */ static int constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } /* 线性阶 */ static int linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } /* 线性阶(遍历数组) */ static int arrayTraversal(int[] nums) { int count = 0; // 循环次数与数组长度成正比 foreach (int num in nums) { count++; } return count; } /* 平方阶 */ static int quadratic(int n) { int count = 0; // 循环次数与数组长度成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* 平方阶(冒泡排序) */ static int bubbleSort(int[] nums) { int count = 0; // 计数器 // 外循环:待排序元素数量为 n-1, n-2, ..., 1 for (int i = nums.Length - 1; i > 0; i--) { // 内循环:冒泡操作 for (int j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } /* 指数阶(循环实现) */ static int exponential(int n) { int count = 0, bas = 1; // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < bas; j++) { count++; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* 指数阶(递归实现) */ static int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } /* 对数阶(循环实现) */ static int logarithmic(float n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } /* 对数阶(递归实现) */ static int logRecur(float n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } /* 线性对数阶 */ static int linearLogRecur(float n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } /* 阶乘阶(递归实现) */ static int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } [Test] public void Test() { // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 int n = 8; Console.WriteLine("输入数据大小 n = " + n); int count = constant(n); Console.WriteLine("常数阶的计算操作数量 = " + count); count = linear(n); Console.WriteLine("线性阶的计算操作数量 = " + count); count = arrayTraversal(new int[n]); Console.WriteLine("线性阶(遍历数组)的计算操作数量 = " + count); count = quadratic(n); Console.WriteLine("平方阶的计算操作数量 = " + count); int[] nums = new int[n]; for (int i = 0; i < n; i++) nums[i] = n - i; // [n,n-1,...,2,1] count = bubbleSort(nums); Console.WriteLine("平方阶(冒泡排序)的计算操作数量 = " + count); count = exponential(n); Console.WriteLine("指数阶(循环实现)的计算操作数量 = " + count); count = expRecur(n); Console.WriteLine("指数阶(递归实现)的计算操作数量 = " + count); count = logarithmic((float)n); Console.WriteLine("对数阶(循环实现)的计算操作数量 = " + count); count = logRecur((float)n); Console.WriteLine("对数阶(递归实现)的计算操作数量 = " + count); count = linearLogRecur((float)n); Console.WriteLine("线性对数阶(递归实现)的计算操作数量 = " + count); count = factorialRecur(n); Console.WriteLine("阶乘阶(递归实现)的计算操作数量 = " + count); } } }