--- comments: true status: new --- # 10.3   二分查找边界 ## 10.3.1   查找左边界 !!! question 给定一个长度为 $n$ 的有序数组 `nums` ,数组可能包含重复元素。请返回数组中最左一个元素 `target` 的索引。若数组中不包含该元素,则返回 $-1$ 。 回忆二分查找插入点的方法,搜索完成后 $i$ 指向最左一个 `target` ,**因此查找插入点本质上是在查找最左一个 `target` 的索引**。 考虑通过查找插入点的函数实现查找左边界。请注意,数组中可能不包含 `target` ,这种情况可能导致以下两种结果。 - 插入点的索引 $i$ 越界。 - 元素 `nums[i]` 与 `target` 不相等。 当遇到以上两种情况时,直接返回 $-1$ 即可。 === "Python" ```python title="binary_search_edge.py" def binary_search_left_edge(nums: list[int], target: int) -> int: """二分查找最左一个 target""" # 等价于查找 target 的插入点 i = binary_search_insertion(nums, target) # 未找到 target ,返回 -1 if i == len(nums) or nums[i] != target: return -1 # 找到 target ,返回索引 i return i ``` === "C++" ```cpp title="binary_search_edge.cpp" /* 二分查找最左一个 target */ int binarySearchLeftEdge(vector &nums, int target) { // 等价于查找 target 的插入点 int i = binarySearchInsertion(nums, target); // 未找到 target ,返回 -1 if (i == nums.size() || nums[i] != target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "Java" ```java title="binary_search_edge.java" /* 二分查找最左一个 target */ int binarySearchLeftEdge(int[] nums, int target) { // 等价于查找 target 的插入点 int i = binary_search_insertion.binarySearchInsertion(nums, target); // 未找到 target ,返回 -1 if (i == nums.length || nums[i] != target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "C#" ```csharp title="binary_search_edge.cs" /* 二分查找最左一个 target */ int binarySearchLeftEdge(int[] nums, int target) { // 等价于查找 target 的插入点 int i = binary_search_insertion.binarySearchInsertion(nums, target); // 未找到 target ,返回 -1 if (i == nums.Length || nums[i] != target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "Go" ```go title="binary_search_edge.go" /* 二分查找最左一个 target */ func binarySearchLeftEdge(nums []int, target int) int { // 等价于查找 target 的插入点 i := binarySearchInsertion(nums, target) // 未找到 target ,返回 -1 if i == len(nums) || nums[i] != target { return -1 } // 找到 target ,返回索引 i return i } ``` === "Swift" ```swift title="binary_search_edge.swift" /* 二分查找最左一个 target */ func binarySearchLeftEdge(nums: [Int], target: Int) -> Int { // 等价于查找 target 的插入点 let i = binarySearchInsertion(nums: nums, target: target) // 未找到 target ,返回 -1 if i == nums.count || nums[i] != target { return -1 } // 找到 target ,返回索引 i return i } ``` === "JS" ```javascript title="binary_search_edge.js" /* 二分查找最左一个 target */ function binarySearchLeftEdge(nums, target) { // 等价于查找 target 的插入点 const i = binarySearchInsertion(nums, target); // 未找到 target ,返回 -1 if (i === nums.length || nums[i] !== target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "TS" ```typescript title="binary_search_edge.ts" /* 二分查找最左一个 target */ function binarySearchLeftEdge(nums: Array, target: number): number { // 等价于查找 target 的插入点 const i = binarySearchInsertion(nums, target); // 未找到 target ,返回 -1 if (i === nums.length || nums[i] !== target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "Dart" ```dart title="binary_search_edge.dart" /* 二分查找最左一个 target */ int binarySearchLeftEdge(List nums, int target) { // 等价于查找 target 的插入点 int i = binarySearchInsertion(nums, target); // 未找到 target ,返回 -1 if (i == nums.length || nums[i] != target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "Rust" ```rust title="binary_search_edge.rs" /* 二分查找最左一个 target */ fn binary_search_left_edge(nums: &[i32], target: i32) -> i32 { // 等价于查找 target 的插入点 let i = binary_search_insertion(nums, target); // 未找到 target ,返回 -1 if i == nums.len() as i32 || nums[i as usize] != target { return -1; } // 找到 target ,返回索引 i i } ``` === "C" ```c title="binary_search_edge.c" /* 二分查找最左一个 target */ int binarySearchLeftEdge(int *nums, int numSize, int target) { // 等价于查找 target 的插入点 int i = binarySearchInsertion(nums, numSize, target); // 未找到 target ,返回 -1 if (i == numSize || nums[i] != target) { return -1; } // 找到 target ,返回索引 i return i; } ``` === "Zig" ```zig title="binary_search_edge.zig" [class]{}-[func]{binarySearchLeftEdge} ``` ## 10.3.2   查找右边界 那么如何查找最右一个 `target` 呢?最直接的方式是修改代码,替换在 `nums[m] == target` 情况下的指针收缩操作。代码在此省略,有兴趣的同学可以自行实现。 下面我们介绍两种更加取巧的方法。 ### 1.   复用查找左边界 实际上,我们可以利用查找最左元素的函数来查找最右元素,具体方法为:**将查找最右一个 `target` 转化为查找最左一个 `target + 1`**。 如图 10-7 所示,查找完成后,指针 $i$ 指向最左一个 `target + 1`(如果存在),而 $j$ 指向最右一个 `target` ,**因此返回 $j$ 即可**。 ![将查找右边界转化为查找左边界](binary_search_edge.assets/binary_search_right_edge_by_left_edge.png)

图 10-7   将查找右边界转化为查找左边界

请注意,返回的插入点是 $i$ ,因此需要将其减 $1$ ,从而获得 $j$ 。 === "Python" ```python title="binary_search_edge.py" def binary_search_right_edge(nums: list[int], target: int) -> int: """二分查找最右一个 target""" # 转化为查找最左一个 target + 1 i = binary_search_insertion(nums, target + 1) # j 指向最右一个 target ,i 指向首个大于 target 的元素 j = i - 1 # 未找到 target ,返回 -1 if j == -1 or nums[j] != target: return -1 # 找到 target ,返回索引 j return j ``` === "C++" ```cpp title="binary_search_edge.cpp" /* 二分查找最右一个 target */ int binarySearchRightEdge(vector &nums, int target) { // 转化为查找最左一个 target + 1 int i = binarySearchInsertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 int j = i - 1; // 未找到 target ,返回 -1 if (j == -1 || nums[j] != target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "Java" ```java title="binary_search_edge.java" /* 二分查找最右一个 target */ int binarySearchRightEdge(int[] nums, int target) { // 转化为查找最左一个 target + 1 int i = binary_search_insertion.binarySearchInsertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 int j = i - 1; // 未找到 target ,返回 -1 if (j == -1 || nums[j] != target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "C#" ```csharp title="binary_search_edge.cs" /* 二分查找最右一个 target */ int binarySearchRightEdge(int[] nums, int target) { // 转化为查找最左一个 target + 1 int i = binary_search_insertion.binarySearchInsertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 int j = i - 1; // 未找到 target ,返回 -1 if (j == -1 || nums[j] != target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "Go" ```go title="binary_search_edge.go" /* 二分查找最右一个 target */ func binarySearchRightEdge(nums []int, target int) int { // 转化为查找最左一个 target + 1 i := binarySearchInsertion(nums, target+1) // j 指向最右一个 target ,i 指向首个大于 target 的元素 j := i - 1 // 未找到 target ,返回 -1 if j == -1 || nums[j] != target { return -1 } // 找到 target ,返回索引 j return j } ``` === "Swift" ```swift title="binary_search_edge.swift" /* 二分查找最右一个 target */ func binarySearchRightEdge(nums: [Int], target: Int) -> Int { // 转化为查找最左一个 target + 1 let i = binarySearchInsertion(nums: nums, target: target + 1) // j 指向最右一个 target ,i 指向首个大于 target 的元素 let j = i - 1 // 未找到 target ,返回 -1 if j == -1 || nums[j] != target { return -1 } // 找到 target ,返回索引 j return j } ``` === "JS" ```javascript title="binary_search_edge.js" /* 二分查找最右一个 target */ function binarySearchRightEdge(nums, target) { // 转化为查找最左一个 target + 1 const i = binarySearchInsertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 const j = i - 1; // 未找到 target ,返回 -1 if (j === -1 || nums[j] !== target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "TS" ```typescript title="binary_search_edge.ts" /* 二分查找最右一个 target */ function binarySearchRightEdge(nums: Array, target: number): number { // 转化为查找最左一个 target + 1 const i = binarySearchInsertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 const j = i - 1; // 未找到 target ,返回 -1 if (j === -1 || nums[j] !== target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "Dart" ```dart title="binary_search_edge.dart" /* 二分查找最右一个 target */ int binarySearchRightEdge(List nums, int target) { // 转化为查找最左一个 target + 1 int i = binarySearchInsertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 int j = i - 1; // 未找到 target ,返回 -1 if (j == -1 || nums[j] != target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "Rust" ```rust title="binary_search_edge.rs" /* 二分查找最右一个 target */ fn binary_search_right_edge(nums: &[i32], target: i32) -> i32 { // 转化为查找最左一个 target + 1 let i = binary_search_insertion(nums, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 let j = i - 1; // 未找到 target ,返回 -1 if j == -1 || nums[j as usize] != target { return -1; } // 找到 target ,返回索引 j j } ``` === "C" ```c title="binary_search_edge.c" /* 二分查找最右一个 target */ int binarySearchRightEdge(int *nums, int numSize, int target) { // 转化为查找最左一个 target + 1 int i = binarySearchInsertion(nums, numSize, target + 1); // j 指向最右一个 target ,i 指向首个大于 target 的元素 int j = i - 1; // 未找到 target ,返回 -1 if (j == -1 || nums[j] != target) { return -1; } // 找到 target ,返回索引 j return j; } ``` === "Zig" ```zig title="binary_search_edge.zig" [class]{}-[func]{binarySearchRightEdge} ``` ### 2.   转化为查找元素 我们知道,当数组不包含 `target` 时,最终 $i$ 和 $j$ 会分别指向首个大于、小于 `target` 的元素。 因此,如图 10-8 所示,我们可以构造一个数组中不存在的元素,用于查找左右边界。 - 查找最左一个 `target` :可以转化为查找 `target - 0.5` ,并返回指针 $i$ 。 - 查找最右一个 `target` :可以转化为查找 `target + 0.5` ,并返回指针 $j$ 。 ![将查找边界转化为查找元素](binary_search_edge.assets/binary_search_edge_by_element.png)

图 10-8   将查找边界转化为查找元素

代码在此省略,值得注意以下两点。 - 给定数组不包含小数,这意味着我们无须关心如何处理相等的情况。 - 因为该方法引入了小数,所以需要将函数中的变量 `target` 改为浮点数类型。