""" File: min_path_sum.py Created Time: 2023-07-04 Author: krahets (krahets@163.com) """ from math import inf def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int: """最小路徑和:暴力搜尋""" # 若為左上角單元格,則終止搜尋 if i == 0 and j == 0: return grid[0][0] # 若行列索引越界,則返回 +∞ 代價 if i < 0 or j < 0: return inf # 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價 up = min_path_sum_dfs(grid, i - 1, j) left = min_path_sum_dfs(grid, i, j - 1) # 返回從左上角到 (i, j) 的最小路徑代價 return min(left, up) + grid[i][j] def min_path_sum_dfs_mem( grid: list[list[int]], mem: list[list[int]], i: int, j: int ) -> int: """最小路徑和:記憶化搜尋""" # 若為左上角單元格,則終止搜尋 if i == 0 and j == 0: return grid[0][0] # 若行列索引越界,則返回 +∞ 代價 if i < 0 or j < 0: return inf # 若已有記錄,則直接返回 if mem[i][j] != -1: return mem[i][j] # 左邊和上邊單元格的最小路徑代價 up = min_path_sum_dfs_mem(grid, mem, i - 1, j) left = min_path_sum_dfs_mem(grid, mem, i, j - 1) # 記錄並返回左上角到 (i, j) 的最小路徑代價 mem[i][j] = min(left, up) + grid[i][j] return mem[i][j] def min_path_sum_dp(grid: list[list[int]]) -> int: """最小路徑和:動態規劃""" n, m = len(grid), len(grid[0]) # 初始化 dp 表 dp = [[0] * m for _ in range(n)] dp[0][0] = grid[0][0] # 狀態轉移:首行 for j in range(1, m): dp[0][j] = dp[0][j - 1] + grid[0][j] # 狀態轉移:首列 for i in range(1, n): dp[i][0] = dp[i - 1][0] + grid[i][0] # 狀態轉移:其餘行和列 for i in range(1, n): for j in range(1, m): dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j] return dp[n - 1][m - 1] def min_path_sum_dp_comp(grid: list[list[int]]) -> int: """最小路徑和:空間最佳化後的動態規劃""" n, m = len(grid), len(grid[0]) # 初始化 dp 表 dp = [0] * m # 狀態轉移:首行 dp[0] = grid[0][0] for j in range(1, m): dp[j] = dp[j - 1] + grid[0][j] # 狀態轉移:其餘行 for i in range(1, n): # 狀態轉移:首列 dp[0] = dp[0] + grid[i][0] # 狀態轉移:其餘列 for j in range(1, m): dp[j] = min(dp[j - 1], dp[j]) + grid[i][j] return dp[m - 1] """Driver Code""" if __name__ == "__main__": grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]] n, m = len(grid), len(grid[0]) # 暴力搜尋 res = min_path_sum_dfs(grid, n - 1, m - 1) print(f"從左上角到右下角的做小路徑和為 {res}") # 記憶化搜尋 mem = [[-1] * m for _ in range(n)] res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1) print(f"從左上角到右下角的做小路徑和為 {res}") # 動態規劃 res = min_path_sum_dp(grid) print(f"從左上角到右下角的做小路徑和為 {res}") # 空間最佳化後的動態規劃 res = min_path_sum_dp_comp(grid) print(f"從左上角到右下角的做小路徑和為 {res}")