跳转至

4.1.   数组

「数组 Array」是一种将 相同类型元素 存储在 连续内存空间 的数据结构,将元素在数组中的位置称为元素的「索引 Index」。

数组定义与存储方式

Fig. 数组定义与存储方式

Note

观察上图,我们发现 数组首元素的索引为 \(0\) 。你可能会想,这并不符合日常习惯,首个元素的索引为什么不是 \(1\) 呢,这不是更加自然吗?我认同你的想法,但请先记住这个设定,后面讲内存地址计算时,我会尝试解答这个问题。

数组初始化。一般会用到无初始值、给定初始值两种写法,可根据需求选取。在不给定初始值的情况下,一般所有元素会被初始化为默认值 \(0\)

array.java
/* 初始化数组 */
int[] arr = new int[5]; // { 0, 0, 0, 0, 0 }
int[] nums = { 1, 3, 2, 5, 4 };
array.cpp
/* 初始化数组 */
// 存储在栈上
int arr[5];
int nums[5] { 1, 3, 2, 5, 4 };
// 存储在堆上
int* arr1 = new int[5];
int* nums1 = new int[5] { 1, 3, 2, 5, 4 };
array.py
""" 初始化数组 """
arr: List[int] = [0] * 5  # [ 0, 0, 0, 0, 0 ]
nums: List[int] = [1, 3, 2, 5, 4]  
array.go
/* 初始化数组 */
var arr [5]int
// 在 Go 中,指定长度时([5]int)为数组,不指定长度时([]int)为切片
// 由于 Go 的数组被设计为在编译期确定长度,因此只能使用常量来指定长度
// 为了方便实现扩容 extend() 方法,以下将切片(Slice)看作数组(Array)
nums := []int{1, 3, 2, 5, 4}
array.js
/* 初始化数组 */
var arr = new Array(5).fill(0);
var nums = [1, 3, 2, 5, 4];
array.ts
/* 初始化数组 */
let arr: number[] = new Array(5).fill(0);
let nums: number[] = [1, 3, 2, 5, 4];
array.c
int arr[5] = { 0 }; // { 0, 0, 0, 0, 0 }
int nums[5] = { 1, 3, 2, 5, 4 };
array.cs
/* 初始化数组 */
int[] arr = new int[5]; // { 0, 0, 0, 0, 0 }
int[] nums = { 1, 3, 2, 5, 4 };
array.swift
/* 初始化数组 */
let arr = Array(repeating: 0, count: 5) // [0, 0, 0, 0, 0]
let nums = [1, 3, 2, 5, 4]
array.zig
// 初始化数组
var arr = [_]i32{0} ** 5; // { 0, 0, 0, 0, 0 }
var nums = [_]i32{ 1, 3, 2, 5, 4 };

4.1.1.   数组优点

在数组中访问元素非常高效。这是因为在数组中,计算元素的内存地址非常容易。给定数组首个元素的地址、和一个元素的索引,利用以下公式可以直接计算得到该元素的内存地址,从而直接访问此元素。

数组元素的内存地址计算

Fig. 数组元素的内存地址计算

# 元素内存地址 = 数组内存地址 + 元素长度 * 元素索引
elementAddr = firtstElementAddr + elementLength * elementIndex

为什么数组元素索引从 0 开始编号? 根据地址计算公式,索引本质上表示的是内存地址偏移量,首个元素的地址偏移量是 \(0\) ,那么索引是 \(0\) 也就很自然了。

访问元素的高效性带来了许多便利。例如,我们可以在 \(O(1)\) 时间内随机获取一个数组中的元素。

array.java
/* 随机返回一个数组元素 */
int randomAccess(int[] nums) {
    // 在区间 [0, nums.length) 中随机抽取一个数字
    int randomIndex = ThreadLocalRandom.current().
                      nextInt(0, nums.length);
    // 获取并返回随机元素
    int randomNum = nums[randomIndex];
    return randomNum;
}
array.cpp
/* 随机返回一个数组元素 */
int randomAccess(int* nums, int size) {
    // 在区间 [0, size) 中随机抽取一个数字
    int randomIndex = rand() % size;
    // 获取并返回随机元素
    int randomNum = nums[randomIndex];
    return randomNum;
}
array.py
def random_access(nums: List[int]) -> int:
    """ 随机访问元素 """
    # 在区间 [0, len(nums)-1] 中随机抽取一个数字
    random_index = random.randint(0, len(nums) - 1)
    # 获取并返回随机元素
    random_num = nums[random_index]
    return random_num
array.go
/* 随机返回一个数组元素 */
func randomAccess(nums []int) (randomNum int) {
    // 在区间 [0, nums.length) 中随机抽取一个数字
    randomIndex := rand.Intn(len(nums))
    // 获取并返回随机元素
    randomNum = nums[randomIndex]
    return
}
array.js
/* 随机返回一个数组元素 */
function randomAccess(nums) {
    // 在区间 [0, nums.length) 中随机抽取一个数字
    const random_index = Math.floor(Math.random() * nums.length);
    // 获取并返回随机元素
    const random_num = nums[random_index];
    return random_num;
}
array.ts
/* 随机返回一个数组元素 */
function randomAccess(nums: number[]): number {
    // 在区间 [0, nums.length) 中随机抽取一个数字
    const random_index = Math.floor(Math.random() * nums.length);
    // 获取并返回随机元素
    const random_num = nums[random_index];
    return random_num;
}
array.c
[class]{}-[func]{randomAccess}
array.cs
/* 随机返回一个数组元素 */
int randomAccess(int[] nums)
{
    Random random = new();
    // 在区间 [0, nums.Length) 中随机抽取一个数字
    int randomIndex = random.Next(nums.Length);
    // 获取并返回随机元素
    int randomNum = nums[randomIndex];
    return randomNum;
}
array.swift
/* 随机返回一个数组元素 */
func randomAccess(nums: [Int]) -> Int {
    // 在区间 [0, nums.count) 中随机抽取一个数字
    let randomIndex = nums.indices.randomElement()!
    // 获取并返回随机元素
    let randomNum = nums[randomIndex]
    return randomNum
}
array.zig
// 随机返回一个数组元素
fn randomAccess(nums: []i32) i32 {
    // 在区间 [0, nums.len) 中随机抽取一个整数
    var randomIndex = std.crypto.random.intRangeLessThan(usize, 0, nums.len);
    // 获取并返回随机元素
    var randomNum = nums[randomIndex];
    return randomNum;
}

4.1.2.   数组缺点

数组在初始化后长度不可变。由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而若希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非常耗时的。

array.java
/* 扩展数组长度 */
int[] extend(int[] nums, int enlarge) {
    // 初始化一个扩展长度后的数组
    int[] res = new int[nums.length + enlarge];
    // 将原数组中的所有元素复制到新数组
    for (int i = 0; i < nums.length; i++) {
        res[i] = nums[i];
    }
    // 返回扩展后的新数组
    return res;
}
array.cpp
/* 扩展数组长度 */
int* extend(int* nums, int size, int enlarge) {
    // 初始化一个扩展长度后的数组
    int* res = new int[size + enlarge];
    // 将原数组中的所有元素复制到新数组
    for (int i = 0; i < size; i++) {
        res[i] = nums[i];
    }
    // 释放内存
    delete[] nums;
    // 返回扩展后的新数组
    return res;
}
array.py
def extend(nums: List[int], enlarge: int) -> List[int]:
    """ 扩展数组长度 """
    # 初始化一个扩展长度后的数组
    res = [0] * (len(nums) + enlarge)
    # 将原数组中的所有元素复制到新数组
    for i in range(len(nums)):
        res[i] = nums[i]
    # 返回扩展后的新数组
    return res
array.go
/* 扩展数组长度 */
func extend(nums []int, enlarge int) []int {
    // 初始化一个扩展长度后的数组
    res := make([]int, len(nums)+enlarge)
    // 将原数组中的所有元素复制到新数组
    for i, num := range nums {
        res[i] = num
    }
    // 返回扩展后的新数组
    return res
}
array.js
/* 扩展数组长度 */
// 请注意,JavaScript 的 Array 是动态数组,可以直接扩展
// 为了方便学习,本函数将 Array 看作是长度不可变的数组
function extend(nums, enlarge) {
    // 初始化一个扩展长度后的数组
    const res = new Array(nums.length + enlarge).fill(0);
    // 将原数组中的所有元素复制到新数组
    for (let i = 0; i < nums.length; i++) {
        res[i] = nums[i];
    }
    // 返回扩展后的新数组
    return res;
}
array.ts
/* 扩展数组长度 */
// 请注意,TypeScript 的 Array 是动态数组,可以直接扩展
// 为了方便学习,本函数将 Array 看作是长度不可变的数组
function extend(nums: number[], enlarge: number): number[] {
    // 初始化一个扩展长度后的数组
    const res = new Array(nums.length + enlarge).fill(0);
    // 将原数组中的所有元素复制到新数组
    for (let i = 0; i < nums.length; i++) {
        res[i] = nums[i];
    }
    // 返回扩展后的新数组
    return res;
}
array.c
[class]{}-[func]{extend}
array.cs
/* 扩展数组长度 */
int[] extend(int[] nums, int enlarge)
{
    // 初始化一个扩展长度后的数组
    int[] res = new int[nums.Length + enlarge];
    // 将原数组中的所有元素复制到新数组
    for (int i = 0; i < nums.Length; i++)
    {
        res[i] = nums[i];
    }
    // 返回扩展后的新数组
    return res;
}
array.swift
/* 扩展数组长度 */
func extend(nums: [Int], enlarge: Int) -> [Int] {
    // 初始化一个扩展长度后的数组
    var res = Array(repeating: 0, count: nums.count + enlarge)
    // 将原数组中的所有元素复制到新数组
    for i in nums.indices {
        res[i] = nums[i]
    }
    // 返回扩展后的新数组
    return res
}
array.zig
// 扩展数组长度
fn extend(mem_allocator: std.mem.Allocator, nums: []i32, enlarge: usize) ![]i32 {
    // 初始化一个扩展长度后的数组
    var res = try mem_allocator.alloc(i32, nums.len + enlarge);
    std.mem.set(i32, res, 0);
    // 将原数组中的所有元素复制到新数组
    std.mem.copy(i32, res, nums);
    // 返回扩展后的新数组
    return res;
}

数组中插入或删除元素效率低下。如果我们想要在数组中间插入一个元素,由于数组元素在内存中是“紧挨着的”,它们之间没有空间再放任何数据。因此,我们不得不将此索引之后的所有元素都向后移动一位,然后再把元素赋值给该索引。

数组插入元素

Fig. 数组插入元素

array.java
/* 在数组的索引 index 处插入元素 num */
void insert(int[] nums, int num, int index) {
    // 把索引 index 以及之后的所有元素向后移动一位
    for (int i = nums.length - 1; i > index; i--) {
        nums[i] = nums[i - 1];
    }
    // 将 num 赋给 index 处元素
    nums[index] = num;
}
array.cpp
/* 在数组的索引 index 处插入元素 num */
void insert(int* nums, int size, int num, int index) {
    // 把索引 index 以及之后的所有元素向后移动一位
    for (int i = size - 1; i > index; i--) {
        nums[i] = nums[i - 1];
    }
    // 将 num 赋给 index 处元素
    nums[index] = num;
}
array.py
def insert(nums: List[int], num: int, index: int) -> None:
    """ 在数组的索引 index 处插入元素 num """
    # 把索引 index 以及之后的所有元素向后移动一位
    for i in range(len(nums) - 1, index, -1):
        nums[i] = nums[i - 1]
    # 将 num 赋给 index 处元素
    nums[index] = num
array.go
/* 在数组的索引 index 处插入元素 num */
func insert(nums []int, num int, index int) {
    // 把索引 index 以及之后的所有元素向后移动一位
    for i := len(nums) - 1; i > index; i-- {
        nums[i] = nums[i-1]
    }
    // 将 num 赋给 index 处元素
    nums[index] = num
}
array.js
/* 在数组的索引 index 处插入元素 num */
function insert(nums, num, index) {
    // 把索引 index 以及之后的所有元素向后移动一位
    for (let i = nums.length - 1; i > index; i--) {
        nums[i] = nums[i - 1];
    }
    // 将 num 赋给 index 处元素
    nums[index] = num;
}
array.ts
/* 在数组的索引 index 处插入元素 num */
function insert(nums: number[], num: number, index: number): void {
    // 把索引 index 以及之后的所有元素向后移动一位
    for (let i = nums.length - 1; i > index; i--) {
        nums[i] = nums[i - 1];
    }
    // 将 num 赋给 index 处元素
    nums[index] = num;
}
array.c
[class]{}-[func]{insert}
array.cs
/* 在数组的索引 index 处插入元素 num */
void insert(int[] nums, int num, int index)
{
    // 把索引 index 以及之后的所有元素向后移动一位
    for (int i = nums.Length - 1; i > index; i--)
    {
        nums[i] = nums[i - 1];
    }
    // 将 num 赋给 index 处元素
    nums[index] = num;
}
array.swift
/* 在数组的索引 index 处插入元素 num */
func insert(nums: inout [Int], num: Int, index: Int) {
    // 把索引 index 以及之后的所有元素向后移动一位
    for i in sequence(first: nums.count - 1, next: { $0 > index + 1 ? $0 - 1 : nil }) {
        nums[i] = nums[i - 1]
    }
    // 将 num 赋给 index 处元素
    nums[index] = num
}

删除元素也是类似,如果我们想要删除索引 \(i\) 处的元素,则需要把索引 \(i\) 之后的元素都向前移动一位。值得注意的是,删除元素后,原先末尾的元素变得“无意义”了,我们无需特意去修改它。

数组删除元素

Fig. 数组删除元素

array.java
/* 删除索引 index 处元素 */
void remove(int[] nums, int index) {
    // 把索引 index 之后的所有元素向前移动一位
    for (int i = index; i < nums.length - 1; i++) {
        nums[i] = nums[i + 1];
    }
}
array.cpp
/* 删除索引 index 处元素 */
void remove(int* nums, int size, int index) {
    // 把索引 index 之后的所有元素向前移动一位
    for (int i = index; i < size - 1; i++) {
        nums[i] = nums[i + 1];
    }
}
array.py
def remove(nums: List[int], index: int) -> None:
    """ 删除索引 index 处元素 """
    # 把索引 index 之后的所有元素向前移动一位
    for i in range(index, len(nums) - 1):
        nums[i] = nums[i + 1]
array.go
/* 删除索引 index 处元素 */
func remove(nums []int, index int) {
    // 把索引 index 之后的所有元素向前移动一位
    for i := index; i < len(nums)-1; i++ {
        nums[i] = nums[i+1]
    }
}
array.js
/* 删除索引 index 处元素 */
function remove(nums, index) {
    // 把索引 index 之后的所有元素向前移动一位
    for (let i = index; i < nums.length - 1; i++) {
        nums[i] = nums[i + 1];
    }
}
array.ts
/* 删除索引 index 处元素 */
function remove(nums: number[], index: number): void {
    // 把索引 index 之后的所有元素向前移动一位
    for (let i = index; i < nums.length - 1; i++) {
        nums[i] = nums[i + 1];
    }
}
array.c
[class]{}-[func]{removeItem}
array.cs
/* 删除索引 index 处元素 */
void remove(int[] nums, int index)
{
    // 把索引 index 之后的所有元素向前移动一位
    for (int i = index; i < nums.Length - 1; i++)
    {
        nums[i] = nums[i + 1];
    }
}
array.swift
/* 删除索引 index 处元素 */
func remove(nums: inout [Int], index: Int) {
    let count = nums.count
    // 把索引 index 之后的所有元素向前移动一位
    for i in sequence(first: index, next: { $0 < count - 1 - 1 ? $0 + 1 : nil }) {
        nums[i] = nums[i + 1]
    }
}
array.zig
// 删除索引 index 处元素
fn remove(nums: []i32, index: usize) void {
    // 把索引 index 之后的所有元素向前移动一位
    var i = index;
    while (i < nums.len - 1) : (i += 1) {
        nums[i] = nums[i + 1];
    }
}

总结来看,数组的插入与删除操作有以下缺点:

  • 时间复杂度高:数组的插入和删除的平均时间复杂度均为 \(O(N)\) ,其中 \(N\) 为数组长度。
  • 丢失元素:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。
  • 内存浪费:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是我们不关心的,但这样做同时也会造成内存空间的浪费。

4.1.3.   数组常用操作

数组遍历。以下介绍两种常用的遍历方法。

array.java
/* 遍历数组 */
void traverse(int[] nums) {
    int count = 0;
    // 通过索引遍历数组
    for (int i = 0; i < nums.length; i++) {
        count++;
    }
    // 直接遍历数组
    for (int num : nums) {
        count++;
    }
}
array.cpp
/* 遍历数组 */
void traverse(int* nums, int size) {
    int count = 0;
    // 通过索引遍历数组
    for (int i = 0; i < size; i++) {
        count++;
    }
}
array.py
def traverse(nums: List[int]) -> None:
    """ 遍历数组 """
    count = 0
    # 通过索引遍历数组
    for i in range(len(nums)):
        count += 1
    # 直接遍历数组
    for num in nums:
        count += 1
array.go
/* 遍历数组 */
func traverse(nums []int) {
    count := 0
    // 通过索引遍历数组
    for i := 0; i < len(nums); i++ {
        count++
    }
    count = 0
    // 直接遍历数组
    for range nums {
        count++
    }
}
array.js
/* 遍历数组 */
function traverse(nums) {
    let count = 0;
    // 通过索引遍历数组
    for (let i = 0; i < nums.length; i++) {
        count++;
    }
    // 直接遍历数组
    for (let num of nums) {
        count += 1;
    }
}
array.ts
/* 遍历数组 */
function traverse(nums: number[]): void {
    let count = 0;
    // 通过索引遍历数组
    for (let i = 0; i < nums.length; i++) {
        count++;
    }
    // 直接遍历数组
    for (let num of nums) {
        count += 1;
    }
}
array.c
[class]{}-[func]{traverse}
array.cs
/* 遍历数组 */
void traverse(int[] nums)
{
    int count = 0;
    // 通过索引遍历数组
    for (int i = 0; i < nums.Length; i++)
    {
        count++;
    }
    // 直接遍历数组
    foreach (int num in nums)
    {
        count++;
    }
}
array.swift
/* 遍历数组 */
func traverse(nums: [Int]) {
    var count = 0
    // 通过索引遍历数组
    for _ in nums.indices {
        count += 1
    }
    // 直接遍历数组
    for _ in nums {
        count += 1
    }
}
array.zig
// 遍历数组
fn traverse(nums: []i32) void {
    var count: i32 = 0;
    // 通过索引遍历数组
    var i: i32 = 0;
    while (i < nums.len) : (i += 1) {
        count += 1;
    }
    count = 0;
    // 直接遍历数组
    for (nums) |_| {
        count += 1;
    }
}

数组查找。通过遍历数组,查找数组内的指定元素,并输出对应索引。

array.java
/* 在数组中查找指定元素 */
int find(int[] nums, int target) {
    for (int i = 0; i < nums.length; i++) {
        if (nums[i] == target)
            return i;
    }
    return -1;
}
array.cpp
/* 在数组中查找指定元素 */
int find(int* nums, int size, int target) {
    for (int i = 0; i < size; i++) {
        if (nums[i] == target)
            return i;
    }
    return -1;
}
array.py
def find(nums: List[int], target: int) -> int:
    """ 在数组中查找指定元素 """
    for i in range(len(nums)):
        if nums[i] == target:
            return i
    return -1
array.go
/* 在数组中查找指定元素 */
func find(nums []int, target int) (index int) {
    index = -1
    for i := 0; i < len(nums); i++ {
        if nums[i] == target {
            index = i
            break
        }
    }
    return
}
array.js
/* 在数组中查找指定元素 */
function find(nums, target) {
    for (let i = 0; i < nums.length; i++) {
        if (nums[i] == target) return i;
    }
    return -1;
}
array.ts
/* 在数组中查找指定元素 */
function find(nums: number[], target: number): number {
    for (let i = 0; i < nums.length; i++) {
        if (nums[i] === target) {
            return i;
        }
    }
    return -1;
}
array.c
[class]{}-[func]{find}
array.cs
/* 在数组中查找指定元素 */
int find(int[] nums, int target)
{
    for (int i = 0; i < nums.Length; i++)
    {
        if (nums[i] == target)
            return i;
    }
    return -1;
}
array.swift
/* 在数组中查找指定元素 */
func find(nums: [Int], target: Int) -> Int {
    for i in nums.indices {
        if nums[i] == target {
            return i
        }
    }
    return -1
}
array.zig
// 在数组中查找指定元素
fn find(nums: []i32, target: i32) i32 {
    for (nums) |num, i| {
        if (num == target) return @intCast(i32, i);
    }
    return -1;
}

4.1.4.   数组典型应用

随机访问。如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取。

二分查找。例如前文查字典的例子,我们可以将字典中的所有字按照拼音顺序存储在数组中,然后使用与日常查纸质字典相同的“翻开中间,排除一半”的方式,来实现一个查电子字典的算法。

深度学习。神经网络中大量使用了向量、矩阵、张量之间的线性代数运算,这些数据都是以数组的形式构建的。数组是神经网络编程中最常使用的数据结构。

评论