# 建堆操作 * 如果我们想要根据输入列表来生成一个堆,这样的操作被称为「建堆」。 ## 两种建堆方法 ### 借助入堆方法实现 最直接地,考虑借助「元素入堆」方法,先建立一个空堆,**再将列表元素依次入堆即可**。 设元素数量为 $n$ ,则最后一个元素入堆的时间复杂度为 $O(\log n)$ ,在依次入堆时,堆的平均长度为 $\frac{n}{2}$ ,因此该方法的总体时间复杂度为 $O(n \log n)$ 。 ### 基于堆化操作实现 有趣的是,存在一种更加高效的建堆方法,时间复杂度可以达到 $O(n)$ 。我们先将列表所有元素原封不动添加进堆,**然后迭代地对各个结点执行「从顶至底堆化」**。当然,**无需对叶结点执行堆化**,因为其没有子结点。 === "Java" ```java title="my_heap.java" [class]{MaxHeap}-[func]{MaxHeap} ``` === "C++" ```cpp title="my_heap.cpp" [class]{MaxHeap}-[func]{MaxHeap} ``` === "Python" ```python title="my_heap.py" [class]{MaxHeap}-[func]{__init__} ``` === "Go" ```go title="my_heap.go" [class]{maxHeap}-[func]{newMaxHeap} ``` === "JavaScript" ```javascript title="my_heap.js" [class]{MaxHeap}-[func]{constructor} ``` === "TypeScript" ```typescript title="my_heap.ts" [class]{MaxHeap}-[func]{constructor} ``` === "C" ```c title="my_heap.c" [class]{maxHeap}-[func]{newMaxHeap} ``` === "C#" ```csharp title="my_heap.cs" [class]{MaxHeap}-[func]{MaxHeap} ``` === "Swift" ```swift title="my_heap.swift" [class]{MaxHeap}-[func]{init} ``` === "Zig" ```zig title="my_heap.zig" [class]{MaxHeap}-[func]{init} ``` ## 复杂度分析 第二种建堆方法的时间复杂度为什么是 $O(n)$ 呢?我们来展开推算一下。 - 完全二叉树中,设结点总数为 $n$ ,则叶结点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此在排除叶结点后,需要堆化结点数量为 $(n - 1)/2$ ,即为 $O(n)$ ; - 从顶至底堆化中,每个结点最多堆化至叶结点,因此最大迭代次数为二叉树高度 $O(\log n)$ ; 将上述两者相乘,可得时间复杂度为 $O(n \log n)$ 。这个估算结果不够准确,因为我们没有考虑到 **二叉树底层结点远多于顶层结点** 的性质。 下面我们来展开计算。为了减小计算难度,我们假设树是一个「完美二叉树」,该假设不会影响计算结果的正确性。设二叉树(即堆)结点数量为 $n$ ,树高度为 $h$ 。上文提到,**结点堆化最大迭代次数等于该结点到叶结点的距离,而这正是“结点高度”**。 ![完美二叉树的各层结点数量](build_heap.assets/heapify_operations_count.png) 因此,我们将各层的“结点数量 $\times$ 结点高度”求和,即可得到 **所有结点的堆化的迭代次数总和**。 $$ T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1 $$ 化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,易得 $$ \begin{aligned} T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline 2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline \end{aligned} $$ **使用错位相减法**,令下式 $2 T(h)$ 减去上式 $T(h)$ ,可得 $$ 2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h $$ 观察上式,$T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为 $$ \begin{aligned} T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline & = 2^{h+1} - h \newline & = O(2^h) \end{aligned} $$ 进一步地,高度为 $h$ 的完美二叉树的结点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。