/** * File: time_complexity.dart * Created Time: 2023-02-12 * Author: Jefferson (JeffersonHuang77@gmail.com) */ /* 常数阶 */ int constant(int n) { int count = 0; int size = 100000; for (var i = 0; i < size; i++) { count++; } return count; } /* 线性阶 */ int linear(int n) { int count = 0; for (var i = 0; i < n; i++) { count++; } return count; } /* 线性阶(遍历数组) */ int arrayTraversal(List nums) { int count = 0; // 循环次数与数组长度成正比 for (var num in nums) { count++; } return count; } /* 平方阶 */ int quadratic(int n) { int count = 0; // 循环次数与数组长度成平方关系 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } /* 平方阶(冒泡排序) */ int bubbleSort(List nums) { int count = 0; // 计数器 // 外循环:未排序区间为 [0, i] for (var i = nums.length - 1; i > 0; i--) { // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端 for (var j = 0; j < i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 与 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交换包含 3 个单元操作 } } } return count; } /* 指数阶(循环实现) */ int exponential(int n) { int count = 0, base = 1; // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (var i = 0; i < n; i++) { for (var j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } /* 对数阶(循环实现) */ int logarithmic(num n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } /* 对数阶(递归实现) */ int logRecur(num n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } /* 线性对数阶 */ int linearLogRecur(num n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (var i = 0; i < n; i++) { count++; } return count; } /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (var i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } /* Driver Code */ int main() { // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势 int n = 8; print('输入数据大小 n = $n'); int count = constant(n); print('常数阶的计算操作数量 = $count'); count = linear(n); print('线性阶的计算操作数量 = $count'); count = arrayTraversal(List.filled(n, 0)); print('线性阶(遍历数组)的计算操作数量 = $count'); count = quadratic(n); print('平方阶的计算操作数量 = $count'); final nums = List.filled(n, 0); for (int i = 0; i < n; i++) { nums[i] = n - i; // [n,n-1,...,2,1] } count = bubbleSort(nums); print('平方阶(冒泡排序)的计算操作数量 = $count'); count = exponential(n); print('指数阶(循环实现)的计算操作数量 = $count'); count = expRecur(n); print('指数阶(递归实现)的计算操作数量 = $count'); count = logarithmic(n); print('对数阶(循环实现)的计算操作数量 = $count'); count = logRecur(n); print('对数阶(递归实现)的计算操作数量 = $count'); count = linearLogRecur(n); print('线性对数阶(递归实现)的计算操作数量 = $count'); count = factorialRecur(n); print('阶乘阶(递归实现)的计算操作数量 = $count'); return 0; }