---
comments: true
---
# 12.3 构建二叉树问题
!!! question
给定一个二叉树的前序遍历 `preorder` 和中序遍历 `inorder` ,请从中构建二叉树,返回二叉树的根节点。
![构建二叉树的示例数据](build_binary_tree_problem.assets/build_tree_example.png)
图 12-5 构建二叉树的示例数据
### 1. 判断是否为分治问题
原问题定义为从 `preorder` 和 `inorder` 构建二叉树,其是一个典型的分治问题。
- **问题可以被分解**:从分治的角度切入,我们可以将原问题划分为两个子问题:构建左子树、构建右子树,加上一步操作:初始化根节点。而对于每个子树(子问题),我们仍然可以复用以上划分方法,将其划分为更小的子树(子问题),直至达到最小子问题(空子树)时终止。
- **子问题是独立的**:左子树和右子树是相互独立的,它们之间没有交集。在构建左子树时,我们只需要关注中序遍历和前序遍历中与左子树对应的部分。右子树同理。
- **子问题的解可以合并**:一旦得到了左子树和右子树(子问题的解),我们就可以将它们链接到根节点上,得到原问题的解。
### 2. 如何划分子树
根据以上分析,这道题是可以使用分治来求解的,**但如何通过前序遍历 `preorder` 和中序遍历 `inorder` 来划分左子树和右子树呢**?
根据定义,`preorder` 和 `inorder` 都可以被划分为三个部分。
- 前序遍历:`[ 根节点 | 左子树 | 右子树 ]` ,例如图 12-5 的树对应 `[ 3 | 9 | 2 1 7 ]` 。
- 中序遍历:`[ 左子树 | 根节点 | 右子树 ]` ,例如图 12-5 的树对应 `[ 9 | 3 | 1 2 7 ]` 。
以上图数据为例,我们可以通过图 12-6 所示的步骤得到划分结果。
1. 前序遍历的首元素 3 是根节点的值。
2. 查找根节点 3 在 `inorder` 中的索引,利用该索引可将 `inorder` 划分为 `[ 9 | 3 | 1 2 7 ]` 。
3. 根据 `inorder` 划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 `preorder` 划分为 `[ 3 | 9 | 2 1 7 ]` 。
![在前序和中序遍历中划分子树](build_binary_tree_problem.assets/build_tree_preorder_inorder_division.png)
图 12-6 在前序和中序遍历中划分子树
### 3. 基于变量描述子树区间
根据以上划分方法,**我们已经得到根节点、左子树、右子树在 `preorder` 和 `inorder` 中的索引区间**。而为了描述这些索引区间,我们需要借助几个指针变量。
- 将当前树的根节点在 `preorder` 中的索引记为 $i$ 。
- 将当前树的根节点在 `inorder` 中的索引记为 $m$ 。
- 将当前树在 `inorder` 中的索引区间记为 $[l, r]$ 。
如表 12-1 所示,通过以上变量即可表示根节点在 `preorder` 中的索引,以及子树在 `inorder` 中的索引区间。
表 12-1 根节点和子树在前序和中序遍历中的索引
| | 根节点在 `preorder` 中的索引 | 子树在 `inorder` 中的索引区间 |
| ------ | -------------------------------- | ----------------------------- |
| 当前树 | $i$ | $[l, r]$ |
| 左子树 | $i + 1$ | $[l, m-1]$ |
| 右子树 | $i + 1 + (m - l)$ | $[m+1, r]$ |
请注意,右子树根节点索引中的 $(m-l)$ 的含义是“左子树的节点数量”,建议配合图 12-7 理解。
![根节点和左右子树的索引区间表示](build_binary_tree_problem.assets/build_tree_division_pointers.png)
图 12-7 根节点和左右子树的索引区间表示
### 4. 代码实现
为了提升查询 $m$ 的效率,我们借助一个哈希表 `hmap` 来存储数组 `inorder` 中元素到索引的映射。
=== "Python"
```python title="build_tree.py"
def dfs(
preorder: list[int],
inorder_map: dict[int, int],
i: int,
l: int,
r: int,
) -> TreeNode | None:
"""构建二叉树:分治"""
# 子树区间为空时终止
if r - l < 0:
return None
# 初始化根节点
root = TreeNode(preorder[i])
# 查询 m ,从而划分左右子树
m = inorder_map[preorder[i]]
# 子问题:构建左子树
root.left = dfs(preorder, inorder_map, i + 1, l, m - 1)
# 子问题:构建右子树
root.right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r)
# 返回根节点
return root
def build_tree(preorder: list[int], inorder: list[int]) -> TreeNode | None:
"""构建二叉树"""
# 初始化哈希表,存储 inorder 元素到索引的映射
inorder_map = {val: i for i, val in enumerate(inorder)}
root = dfs(preorder, inorder_map, 0, 0, len(inorder) - 1)
return root
```
=== "C++"
```cpp title="build_tree.cpp"
/* 构建二叉树:分治 */
TreeNode *dfs(vector &preorder, unordered_map &inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return NULL;
// 初始化根节点
TreeNode *root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]];
// 子问题:构建左子树
root->left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root->right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode *buildTree(vector &preorder, vector &inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
unordered_map inorderMap;
for (int i = 0; i < inorder.size(); i++) {
inorderMap[inorder[i]] = i;
}
TreeNode *root = dfs(preorder, inorderMap, 0, 0, inorder.size() - 1);
return root;
}
```
=== "Java"
```java title="build_tree.java"
/* 构建二叉树:分治 */
TreeNode dfs(int[] preorder, Map inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return null;
// 初始化根节点
TreeNode root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode buildTree(int[] preorder, int[] inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Map inorderMap = new HashMap<>();
for (int i = 0; i < inorder.length; i++) {
inorderMap.put(inorder[i], i);
}
TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
```
=== "C#"
```csharp title="build_tree.cs"
/* 构建二叉树:分治 */
TreeNode dfs(int[] preorder, Dictionary inorderMap, int i, int l, int r) {
// 子树区间为空时终止
if (r - l < 0)
return null;
// 初始化根节点
TreeNode root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]];
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode buildTree(int[] preorder, int[] inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Dictionary inorderMap = new Dictionary();
for (int i = 0; i < inorder.Length; i++) {
inorderMap.TryAdd(inorder[i], i);
}
TreeNode root = dfs(preorder, inorderMap, 0, 0, inorder.Length - 1);
return root;
}
```
=== "Go"
```go title="build_tree.go"
/* 构建二叉树:分治 */
func dfsBuildTree(preorder []int, inorderMap map[int]int, i, l, r int) *TreeNode {
// 子树区间为空时终止
if r-l < 0 {
return nil
}
// 初始化根节点
root := NewTreeNode(preorder[i])
// 查询 m ,从而划分左右子树
m := inorderMap[preorder[i]]
// 子问题:构建左子树
root.Left = dfsBuildTree(preorder, inorderMap, i+1, l, m-1)
// 子问题:构建右子树
root.Right = dfsBuildTree(preorder, inorderMap, i+1+m-l, m+1, r)
// 返回根节点
return root
}
/* 构建二叉树 */
func buildTree(preorder, inorder []int) *TreeNode {
// 初始化哈希表,存储 inorder 元素到索引的映射
inorderMap := make(map[int]int, len(inorder))
for i := 0; i < len(inorder); i++ {
inorderMap[inorder[i]] = i
}
root := dfsBuildTree(preorder, inorderMap, 0, 0, len(inorder)-1)
return root
}
```
=== "Swift"
```swift title="build_tree.swift"
/* 构建二叉树:分治 */
func dfs(preorder: [Int], inorderMap: [Int: Int], i: Int, l: Int, r: Int) -> TreeNode? {
// 子树区间为空时终止
if r - l < 0 {
return nil
}
// 初始化根节点
let root = TreeNode(x: preorder[i])
// 查询 m ,从而划分左右子树
let m = inorderMap[preorder[i]]!
// 子问题:构建左子树
root.left = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1, l: l, r: m - 1)
// 子问题:构建右子树
root.right = dfs(preorder: preorder, inorderMap: inorderMap, i: i + 1 + m - l, l: m + 1, r: r)
// 返回根节点
return root
}
/* 构建二叉树 */
func buildTree(preorder: [Int], inorder: [Int]) -> TreeNode? {
// 初始化哈希表,存储 inorder 元素到索引的映射
let inorderMap = inorder.enumerated().reduce(into: [:]) { $0[$1.element] = $1.offset }
return dfs(preorder: preorder, inorderMap: inorderMap, i: 0, l: 0, r: inorder.count - 1)
}
```
=== "JS"
```javascript title="build_tree.js"
/* 构建二叉树:分治 */
function dfs(preorder, inorderMap, i, l, r) {
// 子树区间为空时终止
if (r - l < 0) return null;
// 初始化根节点
const root = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
const m = inorderMap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
function buildTree(preorder, inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
let inorderMap = new Map();
for (let i = 0; i < inorder.length; i++) {
inorderMap.set(inorder[i], i);
}
const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
```
=== "TS"
```typescript title="build_tree.ts"
/* 构建二叉树:分治 */
function dfs(
preorder: number[],
inorderMap: Map,
i: number,
l: number,
r: number
): TreeNode | null {
// 子树区间为空时终止
if (r - l < 0) return null;
// 初始化根节点
const root: TreeNode = new TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
const m = inorderMap.get(preorder[i]);
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
function buildTree(preorder: number[], inorder: number[]): TreeNode | null {
// 初始化哈希表,存储 inorder 元素到索引的映射
let inorderMap = new Map();
for (let i = 0; i < inorder.length; i++) {
inorderMap.set(inorder[i], i);
}
const root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
```
=== "Dart"
```dart title="build_tree.dart"
/* 构建二叉树:分治 */
TreeNode? dfs(
List preorder,
Map inorderMap,
int i,
int l,
int r,
) {
// 子树区间为空时终止
if (r - l < 0) {
return null;
}
// 初始化根节点
TreeNode? root = TreeNode(preorder[i]);
// 查询 m ,从而划分左右子树
int m = inorderMap[preorder[i]]!;
// 子问题:构建左子树
root.left = dfs(preorder, inorderMap, i + 1, l, m - 1);
// 子问题:构建右子树
root.right = dfs(preorder, inorderMap, i + 1 + m - l, m + 1, r);
// 返回根节点
return root;
}
/* 构建二叉树 */
TreeNode? buildTree(List preorder, List inorder) {
// 初始化哈希表,存储 inorder 元素到索引的映射
Map inorderMap = {};
for (int i = 0; i < inorder.length; i++) {
inorderMap[inorder[i]] = i;
}
TreeNode? root = dfs(preorder, inorderMap, 0, 0, inorder.length - 1);
return root;
}
```
=== "Rust"
```rust title="build_tree.rs"
/* 构建二叉树:分治 */
fn dfs(preorder: &[i32], inorder_map: &HashMap, i: i32, l: i32, r: i32) -> Option>> {
// 子树区间为空时终止
if r - l < 0 { return None; }
// 初始化根节点
let root = TreeNode::new(preorder[i as usize]);
// 查询 m ,从而划分左右子树
let m = inorder_map.get(&preorder[i as usize]).unwrap();
// 子问题:构建左子树
root.borrow_mut().left = dfs(preorder, inorder_map, i + 1, l, m - 1);
// 子问题:构建右子树
root.borrow_mut().right = dfs(preorder, inorder_map, i + 1 + m - l, m + 1, r);
// 返回根节点
Some(root)
}
/* 构建二叉树 */
fn build_tree(preorder: &[i32], inorder: &[i32]) -> Option>> {
// 初始化哈希表,存储 inorder 元素到索引的映射
let mut inorder_map: HashMap = HashMap::new();
for i in 0..inorder.len() {
inorder_map.insert(inorder[i], i as i32);
}
let root = dfs(preorder, &inorder_map, 0, 0, inorder.len() as i32 - 1);
root
}
```
=== "C"
```c title="build_tree.c"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "Zig"
```zig title="build_tree.zig"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
图 12-8 展示了构建二叉树的递归过程,各个节点是在向下“递”的过程中建立的,而各条边(即引用)是在向上“归”的过程中建立的。
=== "<1>"
![构建二叉树的递归过程](build_binary_tree_problem.assets/built_tree_step1.png)
=== "<2>"
![built_tree_step2](build_binary_tree_problem.assets/built_tree_step2.png)
=== "<3>"
![built_tree_step3](build_binary_tree_problem.assets/built_tree_step3.png)
=== "<4>"
![built_tree_step4](build_binary_tree_problem.assets/built_tree_step4.png)
=== "<5>"
![built_tree_step5](build_binary_tree_problem.assets/built_tree_step5.png)
=== "<6>"
![built_tree_step6](build_binary_tree_problem.assets/built_tree_step6.png)
=== "<7>"
![built_tree_step7](build_binary_tree_problem.assets/built_tree_step7.png)
=== "<8>"
![built_tree_step8](build_binary_tree_problem.assets/built_tree_step8.png)
=== "<9>"
![built_tree_step9](build_binary_tree_problem.assets/built_tree_step9.png)
图 12-8 构建二叉树的递归过程
每个递归函数内的前序遍历 `preorder` 和中序遍历 `inorder` 的划分结果如图 12-9 所示。
![每个递归函数中的划分结果](build_binary_tree_problem.assets/built_tree_overall.png)
图 12-9 每个递归函数中的划分结果
设树的节点数量为 $n$ ,初始化每一个节点(执行一个递归函数 `dfs()` )使用 $O(1)$ 时间。**因此总体时间复杂度为 $O(n)$** 。
哈希表存储 `inorder` 元素到索引的映射,空间复杂度为 $O(n)$ 。最差情况下,即二叉树退化为链表时,递归深度达到 $n$ ,使用 $O(n)$ 的栈帧空间。**因此总体空间复杂度为 $O(n)$** 。