--- comments: true --- # 13.3   Subset sum problem ## 13.3.1   Case without duplicate elements !!! question Given an array of positive integers `nums` and a target positive integer `target`, find all possible combinations such that the sum of the elements in the combination equals `target`. The given array has no duplicate elements, and each element can be chosen multiple times. Please return these combinations as a list, which should not contain duplicate combinations. For example, for the input set $\{3, 4, 5\}$ and target integer $9$, the solutions are $\{3, 3, 3\}, \{4, 5\}$. Note the following two points. - Elements in the input set can be chosen an unlimited number of times. - Subsets do not distinguish the order of elements, for example $\{4, 5\}$ and $\{5, 4\}$ are the same subset. ### 1.   Reference permutation solution Similar to the permutation problem, we can imagine the generation of subsets as a series of choices, updating the "element sum" in real-time during the choice process. When the element sum equals `target`, the subset is recorded in the result list. Unlike the permutation problem, **elements in this problem can be chosen an unlimited number of times**, thus there is no need to use a `selected` boolean list to record whether an element has been chosen. We can make minor modifications to the permutation code to initially solve the problem: === "Python" ```python title="subset_sum_i_naive.py" def backtrack( state: list[int], target: int, total: int, choices: list[int], res: list[list[int]], ): """回溯算法:子集和 I""" # 子集和等于 target 时,记录解 if total == target: res.append(list(state)) return # 遍历所有选择 for i in range(len(choices)): # 剪枝:若子集和超过 target ,则跳过该选择 if total + choices[i] > target: continue # 尝试:做出选择,更新元素和 total state.append(choices[i]) # 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res) # 回退:撤销选择,恢复到之前的状态 state.pop() def subset_sum_i_naive(nums: list[int], target: int) -> list[list[int]]: """求解子集和 I(包含重复子集)""" state = [] # 状态(子集) total = 0 # 子集和 res = [] # 结果列表(子集列表) backtrack(state, target, total, nums, res) return res ``` === "C++" ```cpp title="subset_sum_i_naive.cpp" /* 回溯算法:子集和 I */ void backtrack(vector &state, int target, int total, vector &choices, vector> &res) { // 子集和等于 target 时,记录解 if (total == target) { res.push_back(state); return; } // 遍历所有选择 for (size_t i = 0; i < choices.size(); i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.push_back(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop_back(); } } /* 求解子集和 I(包含重复子集) */ vector> subsetSumINaive(vector &nums, int target) { vector state; // 状态(子集) int total = 0; // 子集和 vector> res; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Java" ```java title="subset_sum_i_naive.java" /* 回溯算法:子集和 I */ void backtrack(List state, int target, int total, int[] choices, List> res) { // 子集和等于 target 时,记录解 if (total == target) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 for (int i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.add(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 I(包含重复子集) */ List> subsetSumINaive(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) int total = 0; // 子集和 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "C#" ```csharp title="subset_sum_i_naive.cs" /* 回溯算法:子集和 I */ void Backtrack(List state, int target, int total, int[] choices, List> res) { // 子集和等于 target 时,记录解 if (total == target) { res.Add(new List(state)); return; } // 遍历所有选择 for (int i = 0; i < choices.Length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.Add(choices[i]); // 进行下一轮选择 Backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.RemoveAt(state.Count - 1); } } /* 求解子集和 I(包含重复子集) */ List> SubsetSumINaive(int[] nums, int target) { List state = []; // 状态(子集) int total = 0; // 子集和 List> res = []; // 结果列表(子集列表) Backtrack(state, target, total, nums, res); return res; } ``` === "Go" ```go title="subset_sum_i_naive.go" /* 回溯算法:子集和 I */ func backtrackSubsetSumINaive(total, target int, state, choices *[]int, res *[][]int) { // 子集和等于 target 时,记录解 if target == total { newState := append([]int{}, *state...) *res = append(*res, newState) return } // 遍历所有选择 for i := 0; i < len(*choices); i++ { // 剪枝:若子集和超过 target ,则跳过该选择 if total+(*choices)[i] > target { continue } // 尝试:做出选择,更新元素和 total *state = append(*state, (*choices)[i]) // 进行下一轮选择 backtrackSubsetSumINaive(total+(*choices)[i], target, state, choices, res) // 回退:撤销选择,恢复到之前的状态 *state = (*state)[:len(*state)-1] } } /* 求解子集和 I(包含重复子集) */ func subsetSumINaive(nums []int, target int) [][]int { state := make([]int, 0) // 状态(子集) total := 0 // 子集和 res := make([][]int, 0) // 结果列表(子集列表) backtrackSubsetSumINaive(total, target, &state, &nums, &res) return res } ``` === "Swift" ```swift title="subset_sum_i_naive.swift" /* 回溯算法:子集和 I */ func backtrack(state: inout [Int], target: Int, total: Int, choices: [Int], res: inout [[Int]]) { // 子集和等于 target 时,记录解 if total == target { res.append(state) return } // 遍历所有选择 for i in choices.indices { // 剪枝:若子集和超过 target ,则跳过该选择 if total + choices[i] > target { continue } // 尝试:做出选择,更新元素和 total state.append(choices[i]) // 进行下一轮选择 backtrack(state: &state, target: target, total: total + choices[i], choices: choices, res: &res) // 回退:撤销选择,恢复到之前的状态 state.removeLast() } } /* 求解子集和 I(包含重复子集) */ func subsetSumINaive(nums: [Int], target: Int) -> [[Int]] { var state: [Int] = [] // 状态(子集) let total = 0 // 子集和 var res: [[Int]] = [] // 结果列表(子集列表) backtrack(state: &state, target: target, total: total, choices: nums, res: &res) return res } ``` === "JS" ```javascript title="subset_sum_i_naive.js" /* 回溯算法:子集和 I */ function backtrack(state, target, total, choices, res) { // 子集和等于 target 时,记录解 if (total === target) { res.push([...state]); return; } // 遍历所有选择 for (let i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.push(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I(包含重复子集) */ function subsetSumINaive(nums, target) { const state = []; // 状态(子集) const total = 0; // 子集和 const res = []; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "TS" ```typescript title="subset_sum_i_naive.ts" /* 回溯算法:子集和 I */ function backtrack( state: number[], target: number, total: number, choices: number[], res: number[][] ): void { // 子集和等于 target 时,记录解 if (total === target) { res.push([...state]); return; } // 遍历所有选择 for (let i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.push(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I(包含重复子集) */ function subsetSumINaive(nums: number[], target: number): number[][] { const state = []; // 状态(子集) const total = 0; // 子集和 const res = []; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Dart" ```dart title="subset_sum_i_naive.dart" /* 回溯算法:子集和 I */ void backtrack( List state, int target, int total, List choices, List> res, ) { // 子集和等于 target 时,记录解 if (total == target) { res.add(List.from(state)); return; } // 遍历所有选择 for (int i = 0; i < choices.length; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state.add(choices[i]); // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.removeLast(); } } /* 求解子集和 I(包含重复子集) */ List> subsetSumINaive(List nums, int target) { List state = []; // 状态(子集) int total = 0; // 元素和 List> res = []; // 结果列表(子集列表) backtrack(state, target, total, nums, res); return res; } ``` === "Rust" ```rust title="subset_sum_i_naive.rs" /* 回溯算法:子集和 I */ fn backtrack( mut state: Vec, target: i32, total: i32, choices: &[i32], res: &mut Vec>, ) { // 子集和等于 target 时,记录解 if total == target { res.push(state); return; } // 遍历所有选择 for i in 0..choices.len() { // 剪枝:若子集和超过 target ,则跳过该选择 if total + choices[i] > target { continue; } // 尝试:做出选择,更新元素和 total state.push(choices[i]); // 进行下一轮选择 backtrack(state.clone(), target, total + choices[i], choices, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I(包含重复子集) */ fn subset_sum_i_naive(nums: &[i32], target: i32) -> Vec> { let state = Vec::new(); // 状态(子集) let total = 0; // 子集和 let mut res = Vec::new(); // 结果列表(子集列表) backtrack(state, target, total, nums, &mut res); res } ``` === "C" ```c title="subset_sum_i_naive.c" /* 回溯算法:子集和 I */ void backtrack(int target, int total, int *choices, int choicesSize) { // 子集和等于 target 时,记录解 if (total == target) { for (int i = 0; i < stateSize; i++) { res[resSize][i] = state[i]; } resColSizes[resSize++] = stateSize; return; } // 遍历所有选择 for (int i = 0; i < choicesSize; i++) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue; } // 尝试:做出选择,更新元素和 total state[stateSize++] = choices[i]; // 进行下一轮选择 backtrack(target, total + choices[i], choices, choicesSize); // 回退:撤销选择,恢复到之前的状态 stateSize--; } } /* 求解子集和 I(包含重复子集) */ void subsetSumINaive(int *nums, int numsSize, int target) { resSize = 0; // 初始化解的数量为0 backtrack(target, 0, nums, numsSize); } ``` === "Kotlin" ```kotlin title="subset_sum_i_naive.kt" /* 回溯算法:子集和 I */ fun backtrack( state: MutableList, target: Int, total: Int, choices: IntArray, res: MutableList?> ) { // 子集和等于 target 时,记录解 if (total == target) { res.add(state.toMutableList()) return } // 遍历所有选择 for (i in choices.indices) { // 剪枝:若子集和超过 target ,则跳过该选择 if (total + choices[i] > target) { continue } // 尝试:做出选择,更新元素和 total state.add(choices[i]) // 进行下一轮选择 backtrack(state, target, total + choices[i], choices, res) // 回退:撤销选择,恢复到之前的状态 state.removeAt(state.size - 1) } } /* 求解子集和 I(包含重复子集) */ fun subsetSumINaive(nums: IntArray, target: Int): MutableList?> { val state = mutableListOf() // 状态(子集) val total = 0 // 子集和 val res = mutableListOf?>() // 结果列表(子集列表) backtrack(state, target, total, nums, res) return res } ``` === "Ruby" ```ruby title="subset_sum_i_naive.rb" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_i_naive} ``` === "Zig" ```zig title="subset_sum_i_naive.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumINaive} ``` ??? pythontutor "Code Visualization"
Inputting the array $[3, 4, 5]$ and target element $9$ into the above code yields the results $[3, 3, 3], [4, 5], [5, 4]$. **Although it successfully finds all subsets with a sum of $9$, it includes the duplicate subset $[4, 5]$ and $[5, 4]$**. This is because the search process distinguishes the order of choices, however, subsets do not distinguish the choice order. As shown in the following figure, choosing $4$ before $5$ and choosing $5$ before $4$ are different branches, but correspond to the same subset. ![Subset search and pruning out of bounds](subset_sum_problem.assets/subset_sum_i_naive.png){ class="animation-figure" }

Figure 13-10   Subset search and pruning out of bounds

To eliminate duplicate subsets, **a straightforward idea is to deduplicate the result list**. However, this method is very inefficient for two reasons. - When there are many array elements, especially when `target` is large, the search process produces a large number of duplicate subsets. - Comparing subsets (arrays) for differences is very time-consuming, requiring arrays to be sorted first, then comparing the differences of each element in the arrays. ### 2.   Duplicate subset pruning **We consider deduplication during the search process through pruning**. Observing the following figure, duplicate subsets are generated when choosing array elements in different orders, for example in the following situations. 1. When choosing $3$ in the first round and $4$ in the second round, all subsets containing these two elements are generated, denoted as $[3, 4, \dots]$. 2. Later, when $4$ is chosen in the first round, **the second round should skip $3$** because the subset $[4, 3, \dots]$ generated by this choice completely duplicates the subset from step `1.`. In the search process, each layer's choices are tried one by one from left to right, so the more to the right a branch is, the more it is pruned. 1. First two rounds choose $3$ and $5$, generating subset $[3, 5, \dots]$. 2. First two rounds choose $4$ and $5$, generating subset $[4, 5, \dots]$. 3. If $5$ is chosen in the first round, **then the second round should skip $3$ and $4$** as the subsets $[5, 3, \dots]$ and $[5, 4, \dots]$ completely duplicate the subsets described in steps `1.` and `2.`. ![Different choice orders leading to duplicate subsets](subset_sum_problem.assets/subset_sum_i_pruning.png){ class="animation-figure" }

Figure 13-11   Different choice orders leading to duplicate subsets

In summary, given the input array $[x_1, x_2, \dots, x_n]$, the choice sequence in the search process should be $[x_{i_1}, x_{i_2}, \dots, x_{i_m}]$, which needs to satisfy $i_1 \leq i_2 \leq \dots \leq i_m$. **Any choice sequence that does not meet this condition will cause duplicates and should be pruned**. ### 3.   Code implementation To implement this pruning, we initialize the variable `start`, which indicates the starting point for traversal. **After making the choice $x_{i}$, set the next round to start from index $i$**. This will ensure the choice sequence satisfies $i_1 \leq i_2 \leq \dots \leq i_m$, thereby ensuring the uniqueness of the subsets. Besides, we have made the following two optimizations to the code. - Before starting the search, sort the array `nums`. In the traversal of all choices, **end the loop directly when the subset sum exceeds `target`** as subsequent elements are larger and their subset sum will definitely exceed `target`. - Eliminate the element sum variable `total`, **by performing subtraction on `target` to count the element sum**. When `target` equals $0$, record the solution. === "Python" ```python title="subset_sum_i.py" def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """回溯算法:子集和 I""" # 子集和等于 target 时,记录解 if target == 0: res.append(list(state)) return # 遍历所有选择 # 剪枝二:从 start 开始遍历,避免生成重复子集 for i in range(start, len(choices)): # 剪枝一:若子集和超过 target ,则直接结束循环 # 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0: break # 尝试:做出选择,更新 target, start state.append(choices[i]) # 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res) # 回退:撤销选择,恢复到之前的状态 state.pop() def subset_sum_i(nums: list[int], target: int) -> list[list[int]]: """求解子集和 I""" state = [] # 状态(子集) nums.sort() # 对 nums 进行排序 start = 0 # 遍历起始点 res = [] # 结果列表(子集列表) backtrack(state, target, nums, start, res) return res ``` === "C++" ```cpp title="subset_sum_i.cpp" /* 回溯算法:子集和 I */ void backtrack(vector &state, int target, vector &choices, int start, vector> &res) { // 子集和等于 target 时,记录解 if (target == 0) { res.push_back(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.size(); i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.push_back(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop_back(); } } /* 求解子集和 I */ vector> subsetSumI(vector &nums, int target) { vector state; // 状态(子集) sort(nums.begin(), nums.end()); // 对 nums 进行排序 int start = 0; // 遍历起始点 vector> res; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Java" ```java title="subset_sum_i.java" /* 回溯算法:子集和 I */ void backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 I */ List> subsetSumI(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) Arrays.sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "C#" ```csharp title="subset_sum_i.cs" /* 回溯算法:子集和 I */ void Backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.Add(new List(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.Length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.Add(choices[i]); // 进行下一轮选择 Backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.RemoveAt(state.Count - 1); } } /* 求解子集和 I */ List> SubsetSumI(int[] nums, int target) { List state = []; // 状态(子集) Array.Sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = []; // 结果列表(子集列表) Backtrack(state, target, nums, start, res); return res; } ``` === "Go" ```go title="subset_sum_i.go" /* 回溯算法:子集和 I */ func backtrackSubsetSumI(start, target int, state, choices *[]int, res *[][]int) { // 子集和等于 target 时,记录解 if target == 0 { newState := append([]int{}, *state...) *res = append(*res, newState) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for i := start; i < len(*choices); i++ { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target-(*choices)[i] < 0 { break } // 尝试:做出选择,更新 target, start *state = append(*state, (*choices)[i]) // 进行下一轮选择 backtrackSubsetSumI(i, target-(*choices)[i], state, choices, res) // 回退:撤销选择,恢复到之前的状态 *state = (*state)[:len(*state)-1] } } /* 求解子集和 I */ func subsetSumI(nums []int, target int) [][]int { state := make([]int, 0) // 状态(子集) sort.Ints(nums) // 对 nums 进行排序 start := 0 // 遍历起始点 res := make([][]int, 0) // 结果列表(子集列表) backtrackSubsetSumI(start, target, &state, &nums, &res) return res } ``` === "Swift" ```swift title="subset_sum_i.swift" /* 回溯算法:子集和 I */ func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) { // 子集和等于 target 时,记录解 if target == 0 { res.append(state) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for i in choices.indices.dropFirst(start) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break } // 尝试:做出选择,更新 target, start state.append(choices[i]) // 进行下一轮选择 backtrack(state: &state, target: target - choices[i], choices: choices, start: i, res: &res) // 回退:撤销选择,恢复到之前的状态 state.removeLast() } } /* 求解子集和 I */ func subsetSumI(nums: [Int], target: Int) -> [[Int]] { var state: [Int] = [] // 状态(子集) let nums = nums.sorted() // 对 nums 进行排序 let start = 0 // 遍历起始点 var res: [[Int]] = [] // 结果列表(子集列表) backtrack(state: &state, target: target, choices: nums, start: start, res: &res) return res } ``` === "JS" ```javascript title="subset_sum_i.js" /* 回溯算法:子集和 I */ function backtrack(state, target, choices, start, res) { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I */ function subsetSumI(nums, target) { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "TS" ```typescript title="subset_sum_i.ts" /* 回溯算法:子集和 I */ function backtrack( state: number[], target: number, choices: number[], start: number, res: number[][] ): void { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I */ function subsetSumI(nums: number[], target: number): number[][] { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Dart" ```dart title="subset_sum_i.dart" /* 回溯算法:子集和 I */ void backtrack( List state, int target, List choices, int start, List> res, ) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(List.from(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.removeLast(); } } /* 求解子集和 I */ List> subsetSumI(List nums, int target) { List state = []; // 状态(子集) nums.sort(); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Rust" ```rust title="subset_sum_i.rs" /* 回溯算法:子集和 I */ fn backtrack( mut state: Vec, target: i32, choices: &[i32], start: usize, res: &mut Vec>, ) { // 子集和等于 target 时,记录解 if target == 0 { res.push(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for i in start..choices.len() { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state.clone(), target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 I */ fn subset_sum_i(nums: &mut [i32], target: i32) -> Vec> { let state = Vec::new(); // 状态(子集) nums.sort(); // 对 nums 进行排序 let start = 0; // 遍历起始点 let mut res = Vec::new(); // 结果列表(子集列表) backtrack(state, target, nums, start, &mut res); res } ``` === "C" ```c title="subset_sum_i.c" /* 回溯算法:子集和 I */ void backtrack(int target, int *choices, int choicesSize, int start) { // 子集和等于 target 时,记录解 if (target == 0) { for (int i = 0; i < stateSize; ++i) { res[resSize][i] = state[i]; } resColSizes[resSize++] = stateSize; return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (int i = start; i < choicesSize; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 尝试:做出选择,更新 target, start state[stateSize] = choices[i]; stateSize++; // 进行下一轮选择 backtrack(target - choices[i], choices, choicesSize, i); // 回退:撤销选择,恢复到之前的状态 stateSize--; } } /* 求解子集和 I */ void subsetSumI(int *nums, int numsSize, int target) { qsort(nums, numsSize, sizeof(int), cmp); // 对 nums 进行排序 int start = 0; // 遍历起始点 backtrack(target, nums, numsSize, start); } ``` === "Kotlin" ```kotlin title="subset_sum_i.kt" /* 回溯算法:子集和 I */ fun backtrack( state: MutableList, target: Int, choices: IntArray, start: Int, res: MutableList?> ) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(state.toMutableList()) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 for (i in start..?> { val state = mutableListOf() // 状态(子集) nums.sort() // 对 nums 进行排序 val start = 0 // 遍历起始点 val res = mutableListOf?>() // 结果列表(子集列表) backtrack(state, target, nums, start, res) return res } ``` === "Ruby" ```ruby title="subset_sum_i.rb" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_i} ``` === "Zig" ```zig title="subset_sum_i.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumI} ``` ??? pythontutor "Code Visualization"
The following figure shows the overall backtracking process after inputting the array $[3, 4, 5]$ and target element $9$ into the above code. ![Subset sum I backtracking process](subset_sum_problem.assets/subset_sum_i.png){ class="animation-figure" }

Figure 13-12   Subset sum I backtracking process

## 13.3.2   Considering cases with duplicate elements !!! question Given an array of positive integers `nums` and a target positive integer `target`, find all possible combinations such that the sum of the elements in the combination equals `target`. **The given array may contain duplicate elements, and each element can only be chosen once**. Please return these combinations as a list, which should not contain duplicate combinations. Compared to the previous question, **this question's input array may contain duplicate elements**, introducing new problems. For example, given the array $[4, \hat{4}, 5]$ and target element $9$, the existing code's output results in $[4, 5], [\hat{4}, 5]$, resulting in duplicate subsets. **The reason for this duplication is that equal elements are chosen multiple times in a certain round**. In the following figure, the first round has three choices, two of which are $4$, generating two duplicate search branches, thus outputting duplicate subsets; similarly, the two $4$s in the second round also produce duplicate subsets. ![Duplicate subsets caused by equal elements](subset_sum_problem.assets/subset_sum_ii_repeat.png){ class="animation-figure" }

Figure 13-13   Duplicate subsets caused by equal elements

### 1.   Equal element pruning To solve this issue, **we need to limit equal elements to being chosen only once per round**. The implementation is quite clever: since the array is sorted, equal elements are adjacent. This means that in a certain round of choices, if the current element is equal to its left-hand element, it means it has already been chosen, so skip the current element directly. At the same time, **this question stipulates that each array element can only be chosen once**. Fortunately, we can also use the variable `start` to meet this constraint: after making the choice $x_{i}$, set the next round to start from index $i + 1$ going forward. This not only eliminates duplicate subsets but also avoids repeated selection of elements. ### 2.   Code implementation === "Python" ```python title="subset_sum_ii.py" def backtrack( state: list[int], target: int, choices: list[int], start: int, res: list[list[int]] ): """回溯算法:子集和 II""" # 子集和等于 target 时,记录解 if target == 0: res.append(list(state)) return # 遍历所有选择 # 剪枝二:从 start 开始遍历,避免生成重复子集 # 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i in range(start, len(choices)): # 剪枝一:若子集和超过 target ,则直接结束循环 # 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0: break # 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start and choices[i] == choices[i - 1]: continue # 尝试:做出选择,更新 target, start state.append(choices[i]) # 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res) # 回退:撤销选择,恢复到之前的状态 state.pop() def subset_sum_ii(nums: list[int], target: int) -> list[list[int]]: """求解子集和 II""" state = [] # 状态(子集) nums.sort() # 对 nums 进行排序 start = 0 # 遍历起始点 res = [] # 结果列表(子集列表) backtrack(state, target, nums, start, res) return res ``` === "C++" ```cpp title="subset_sum_ii.cpp" /* 回溯算法:子集和 II */ void backtrack(vector &state, int target, vector &choices, int start, vector> &res) { // 子集和等于 target 时,记录解 if (target == 0) { res.push_back(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.size(); i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.push_back(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.pop_back(); } } /* 求解子集和 II */ vector> subsetSumII(vector &nums, int target) { vector state; // 状态(子集) sort(nums.begin(), nums.end()); // 对 nums 进行排序 int start = 0; // 遍历起始点 vector> res; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Java" ```java title="subset_sum_ii.java" /* 回溯算法:子集和 II */ void backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(new ArrayList<>(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.remove(state.size() - 1); } } /* 求解子集和 II */ List> subsetSumII(int[] nums, int target) { List state = new ArrayList<>(); // 状态(子集) Arrays.sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = new ArrayList<>(); // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "C#" ```csharp title="subset_sum_ii.cs" /* 回溯算法:子集和 II */ void Backtrack(List state, int target, int[] choices, int start, List> res) { // 子集和等于 target 时,记录解 if (target == 0) { res.Add(new List(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.Length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.Add(choices[i]); // 进行下一轮选择 Backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.RemoveAt(state.Count - 1); } } /* 求解子集和 II */ List> SubsetSumII(int[] nums, int target) { List state = []; // 状态(子集) Array.Sort(nums); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = []; // 结果列表(子集列表) Backtrack(state, target, nums, start, res); return res; } ``` === "Go" ```go title="subset_sum_ii.go" /* 回溯算法:子集和 II */ func backtrackSubsetSumII(start, target int, state, choices *[]int, res *[][]int) { // 子集和等于 target 时,记录解 if target == 0 { newState := append([]int{}, *state...) *res = append(*res, newState) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i := start; i < len(*choices); i++ { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target-(*choices)[i] < 0 { break } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start && (*choices)[i] == (*choices)[i-1] { continue } // 尝试:做出选择,更新 target, start *state = append(*state, (*choices)[i]) // 进行下一轮选择 backtrackSubsetSumII(i+1, target-(*choices)[i], state, choices, res) // 回退:撤销选择,恢复到之前的状态 *state = (*state)[:len(*state)-1] } } /* 求解子集和 II */ func subsetSumII(nums []int, target int) [][]int { state := make([]int, 0) // 状态(子集) sort.Ints(nums) // 对 nums 进行排序 start := 0 // 遍历起始点 res := make([][]int, 0) // 结果列表(子集列表) backtrackSubsetSumII(start, target, &state, &nums, &res) return res } ``` === "Swift" ```swift title="subset_sum_ii.swift" /* 回溯算法:子集和 II */ func backtrack(state: inout [Int], target: Int, choices: [Int], start: Int, res: inout [[Int]]) { // 子集和等于 target 时,记录解 if target == 0 { res.append(state) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i in choices.indices.dropFirst(start) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start, choices[i] == choices[i - 1] { continue } // 尝试:做出选择,更新 target, start state.append(choices[i]) // 进行下一轮选择 backtrack(state: &state, target: target - choices[i], choices: choices, start: i + 1, res: &res) // 回退:撤销选择,恢复到之前的状态 state.removeLast() } } /* 求解子集和 II */ func subsetSumII(nums: [Int], target: Int) -> [[Int]] { var state: [Int] = [] // 状态(子集) let nums = nums.sorted() // 对 nums 进行排序 let start = 0 // 遍历起始点 var res: [[Int]] = [] // 结果列表(子集列表) backtrack(state: &state, target: target, choices: nums, start: start, res: &res) return res } ``` === "JS" ```javascript title="subset_sum_ii.js" /* 回溯算法:子集和 II */ function backtrack(state, target, choices, start, res) { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] === choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 II */ function subsetSumII(nums, target) { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "TS" ```typescript title="subset_sum_ii.ts" /* 回溯算法:子集和 II */ function backtrack( state: number[], target: number, choices: number[], start: number, res: number[][] ): void { // 子集和等于 target 时,记录解 if (target === 0) { res.push([...state]); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (let i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] === choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 II */ function subsetSumII(nums: number[], target: number): number[][] { const state = []; // 状态(子集) nums.sort((a, b) => a - b); // 对 nums 进行排序 const start = 0; // 遍历起始点 const res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Dart" ```dart title="subset_sum_ii.dart" /* 回溯算法:子集和 II */ void backtrack( List state, int target, List choices, int start, List> res, ) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(List.from(state)); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choices.length; i++) { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if (target - choices[i] < 0) { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state.add(choices[i]); // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res); // 回退:撤销选择,恢复到之前的状态 state.removeLast(); } } /* 求解子集和 II */ List> subsetSumII(List nums, int target) { List state = []; // 状态(子集) nums.sort(); // 对 nums 进行排序 int start = 0; // 遍历起始点 List> res = []; // 结果列表(子集列表) backtrack(state, target, nums, start, res); return res; } ``` === "Rust" ```rust title="subset_sum_ii.rs" /* 回溯算法:子集和 II */ fn backtrack( mut state: Vec, target: i32, choices: &[i32], start: usize, res: &mut Vec>, ) { // 子集和等于 target 时,记录解 if target == 0 { res.push(state); return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for i in start..choices.len() { // 剪枝一:若子集和超过 target ,则直接结束循环 // 这是因为数组已排序,后边元素更大,子集和一定超过 target if target - choices[i] < 0 { break; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if i > start && choices[i] == choices[i - 1] { continue; } // 尝试:做出选择,更新 target, start state.push(choices[i]); // 进行下一轮选择 backtrack(state.clone(), target - choices[i], choices, i, res); // 回退:撤销选择,恢复到之前的状态 state.pop(); } } /* 求解子集和 II */ fn subset_sum_ii(nums: &mut [i32], target: i32) -> Vec> { let state = Vec::new(); // 状态(子集) nums.sort(); // 对 nums 进行排序 let start = 0; // 遍历起始点 let mut res = Vec::new(); // 结果列表(子集列表) backtrack(state, target, nums, start, &mut res); res } ``` === "C" ```c title="subset_sum_ii.c" /* 回溯算法:子集和 II */ void backtrack(int target, int *choices, int choicesSize, int start) { // 子集和等于 target 时,记录解 if (target == 0) { for (int i = 0; i < stateSize; i++) { res[resSize][i] = state[i]; } resColSizes[resSize++] = stateSize; return; } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (int i = start; i < choicesSize; i++) { // 剪枝一:若子集和超过 target ,则直接跳过 if (target - choices[i] < 0) { continue; } // 剪枝四:如果该元素与左边元素相等,说明该搜索分支重复,直接跳过 if (i > start && choices[i] == choices[i - 1]) { continue; } // 尝试:做出选择,更新 target, start state[stateSize] = choices[i]; stateSize++; // 进行下一轮选择 backtrack(target - choices[i], choices, choicesSize, i + 1); // 回退:撤销选择,恢复到之前的状态 stateSize--; } } /* 求解子集和 II */ void subsetSumII(int *nums, int numsSize, int target) { // 对 nums 进行排序 qsort(nums, numsSize, sizeof(int), cmp); // 开始回溯 backtrack(target, nums, numsSize, 0); } ``` === "Kotlin" ```kotlin title="subset_sum_ii.kt" /* 回溯算法:子集和 II */ fun backtrack( state: MutableList, target: Int, choices: IntArray, start: Int, res: MutableList?> ) { // 子集和等于 target 时,记录解 if (target == 0) { res.add(state.toMutableList()) return } // 遍历所有选择 // 剪枝二:从 start 开始遍历,避免生成重复子集 // 剪枝三:从 start 开始遍历,避免重复选择同一元素 for (i in start.. start && choices[i] == choices[i - 1]) { continue } // 尝试:做出选择,更新 target, start state.add(choices[i]) // 进行下一轮选择 backtrack(state, target - choices[i], choices, i + 1, res) // 回退:撤销选择,恢复到之前的状态 state.removeAt(state.size - 1) } } /* 求解子集和 II */ fun subsetSumII(nums: IntArray, target: Int): MutableList?> { val state = mutableListOf() // 状态(子集) nums.sort() // 对 nums 进行排序 val start = 0 // 遍历起始点 val res = mutableListOf?>() // 结果列表(子集列表) backtrack(state, target, nums, start, res) return res } ``` === "Ruby" ```ruby title="subset_sum_ii.rb" [class]{}-[func]{backtrack} [class]{}-[func]{subset_sum_ii} ``` === "Zig" ```zig title="subset_sum_ii.zig" [class]{}-[func]{backtrack} [class]{}-[func]{subsetSumII} ``` ??? pythontutor "Code Visualization"
The following figure shows the backtracking process for the array $[4, 4, 5]$ and target element $9$, including four types of pruning operations. Please combine the illustration with the code comments to understand the entire search process and how each type of pruning operation works. ![Subset sum II backtracking process](subset_sum_problem.assets/subset_sum_ii.png){ class="animation-figure" }

Figure 13-14   Subset sum II backtracking process