15.2. 分数背包问题¶
分数背包是 0-1 背包问题的一个变种问题。
Question
给定 \(n\) 个物品,第 \(i\) 个物品的重量为 \(wgt[i-1]\) 、价值为 \(val[i-1]\) ,现在有个容量为 \(cap\) 的背包,每个物品只能选择一次,但可以选择物品的一部分,价值根据选择的重量比例计算,问在不超过背包容量下背包中物品的最大价值。
Fig. 分数背包问题的示例数据
第一步:问题分析
本题和 0-1 背包整体上非常相似,状态包含当前物品 \(i\) 和容量 \(c\) ,目标是求不超过背包容量下的最大价值。
不同点在于,本题允许只选择物品的一部分,我们可以对物品任意地进行切分,并按照重量比例来计算物品价值,因此有:
- 对于物品 \(i\) ,它在单位重量下的价值为 \(val[i-1] / wgt[i-1]\) ,简称为单位价值;
- 假设放入一部分物品 \(i\) ,重量为 \(w\) ,则背包增加的价值为 \(w \times val[i-1] / wgt[i-1]\) ;
Fig. 物品在单位重量下的价值
第二步:贪心策略确定
最大化背包内物品总价值,本质上是要最大化单位重量下的物品价值。由此便可推出本题的贪心策略:
- 将物品按照单位价值从高到低进行排序。
- 遍历所有物品,每轮贪心地选择单位价值最高的物品。
- 若剩余背包容量不足,则使用当前物品的一部分填满背包即可。
Fig. 分数背包的贪心策略
第三步:正确性证明
采用反证法。假设物品 \(x\) 是单位价值最高的物品,使用某算法求得最大价值为 \(res\) ,但该解中不包含物品 \(x\) 。
现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 \(x\) 。由于物品 \(x\) 的单位价值最高,因此替换后的总价值一定大于 \(res\) 。这与 \(res\) 是最优解矛盾,说明最优解中必须包含物品 \(x\) 。
对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。
实现代码
我们构建了一个物品类 Item
,以便将物品按照单位价值进行排序。在循环贪心选择中,分为放入整个物品或放入部分物品两种情况。当背包已满时,则跳出循环并返回解。
/* 物品 */
class Item {
int w; // 物品重量
int v; // 物品价值
public Item(int w, int v) {
this.w = w;
this.v = v;
}
}
/* 分数背包:贪心 */
double fractionalKnapsack(int[] wgt, int[] val, int cap) {
// 创建物品列表,包含两个属性:重量、价值
Item[] items = new Item[wgt.length];
for (int i = 0; i < wgt.length; i++) {
items[i] = new Item(wgt[i], val[i]);
}
// 按照单位价值 item.v / item.w 从高到低进行排序
Arrays.sort(items, Comparator.comparingDouble(item -> -((double) item.v / item.w)));
// 循环贪心选择
double res = 0;
for (Item item : items) {
if (item.w <= cap) {
// 若剩余容量充足,则将当前物品整个装进背包
res += item.v;
cap -= item.w;
} else {
// 若剩余容量不足,则将当前物品的一部分装进背包
res += (double) item.v / item.w * cap;
// 已无剩余容量,因此跳出循环
break;
}
}
return res;
}
/* 物品 */
class Item {
public:
int w; // 物品重量
int v; // 物品价值
Item(int w, int v) : w(w), v(v) {
}
};
/* 分数背包:贪心 */
double fractionalKnapsack(vector<int> &wgt, vector<int> &val, int cap) {
// 创建物品列表,包含两个属性:重量、价值
vector<Item> items;
for (int i = 0; i < wgt.size(); i++) {
items.push_back(Item(wgt[i], val[i]));
}
// 按照单位价值 item.v / item.w 从高到低进行排序
sort(items.begin(), items.end(), [](Item &a, Item &b) { return (double)a.v / a.w > (double)b.v / b.w; });
// 循环贪心选择
double res = 0;
for (auto &item : items) {
if (item.w <= cap) {
// 若剩余容量充足,则将当前物品整个装进背包
res += item.v;
cap -= item.w;
} else {
// 若剩余容量不足,则将当前物品的一部分装进背包
res += (double)item.v / item.w * cap;
// 已无剩余容量,因此跳出循环
break;
}
}
return res;
}
class Item:
"""物品"""
def __init__(self, w: int, v: int):
self.w = w # 物品重量
self.v = v # 物品价值
def fractional_knapsack(wgt: list[int], val: list[int], cap: int) -> int:
"""分数背包:贪心"""
# 创建物品列表,包含两个属性:重量、价值
items = [Item(w, v) for w, v in zip(wgt, val)]
# 按照单位价值 item.v / item.w 从高到低进行排序
items.sort(key=lambda item: item.v / item.w, reverse=True)
# 循环贪心选择
res = 0
for item in items:
if item.w <= cap:
# 若剩余容量充足,则将当前物品整个装进背包
res += item.v
cap -= item.w
else:
# 若剩余容量不足,则将当前物品的一部分装进背包
res += (item.v / item.w) * cap
# 已无剩余容量,因此跳出循环
break
return res
如下图所示,如果将一个 2D 图表的横轴和纵轴分别看作物品重量和物品单位价值,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度清晰地看到贪心策略的有效性。
Fig. 分数背包问题的几何表示
最差情况下,需要遍历整个物品列表,因此时间复杂度为 \(O(n)\) ,其中 \(n\) 为物品数量。由于初始化了一个 Item
对象列表,因此空间复杂度为 \(O(n)\) 。