11.5. 归并排序¶
「归并排序 Merge Sort」是算法中“分治思想”的典型体现,其有「划分」和「合并」两个阶段:
- 划分阶段:通过递归不断 将数组从中点位置划分开,将长数组的排序问题转化为短数组的排序问题;
- 合并阶段:划分到子数组长度为 1 时,开始向上合并,不断将 左、右两个短排序数组 合并为 一个长排序数组,直至合并至原数组时完成排序;
Fig. 归并排序的划分与合并阶段
11.5.1. 算法流程¶
「递归划分」 从顶至底递归地 将数组从中点切为两个子数组,直至长度为 1 ;
- 计算数组中点
mid
,递归划分左子数组(区间[left, mid]
)和右子数组(区间[mid + 1, right]
); - 递归执行
1.
步骤,直至子数组区间长度为 1 时,终止递归划分;
「回溯合并」 从底至顶地将左子数组和右子数组合并为一个 有序数组 ;
需要注意,由于从长度为 1 的子数组开始合并,所以 每个子数组都是有序的。因此,合并任务本质是要 将两个有序子数组合并为一个有序数组。
观察发现,归并排序的递归顺序就是二叉树的「后序遍历」。
- 后序遍历:先递归左子树、再递归右子树、最后处理根结点。
- 归并排序:先递归左子树、再递归右子树、最后处理合并。
merge_sort.java
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
void merge(int[] nums, int left, int mid, int right) {
// 初始化辅助数组
int[] tmp = Arrays.copyOfRange(nums, left, right + 1);
// 左子数组的起始索引和结束索引
int leftStart = left - left, leftEnd = mid - left;
// 右子数组的起始索引和结束索引
int rightStart = mid + 1 - left, rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
int i = leftStart, j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for (int k = left; k <= right; k++) {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd)
nums[k] = tmp[j++];
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
else if (j > rightEnd || tmp[i] <= tmp[j])
nums[k] = tmp[i++];
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else
nums[k] = tmp[j++];
}
}
/* 归并排序 */
void mergeSort(int[] nums, int left, int right) {
// 终止条件
if (left >= right) return; // 当子数组长度为 1 时终止递归
// 划分阶段
int mid = (left + right) / 2; // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}
merge_sort.cpp
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
void merge(vector<int>& nums, int left, int mid, int right) {
// 初始化辅助数组
vector<int> tmp(nums.begin() + left, nums.begin() + right + 1);
// 左子数组的起始索引和结束索引
int leftStart = left - left, leftEnd = mid - left;
// 右子数组的起始索引和结束索引
int rightStart = mid + 1 - left, rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
int i = leftStart, j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for (int k = left; k <= right; k++) {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd)
nums[k] = tmp[j++];
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
else if (j > rightEnd || tmp[i] <= tmp[j])
nums[k] = tmp[i++];
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else
nums[k] = tmp[j++];
}
}
/* 归并排序 */
void mergeSort(vector<int>& nums, int left, int right) {
// 终止条件
if (left >= right) return; // 当子数组长度为 1 时终止递归
// 划分阶段
int mid = (left + right) / 2; // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}
merge_sort.py
def merge(nums: list[int], left: int, mid: int, right: int) -> None:
""" 合并左子数组和右子数组 """
# 左子数组区间 [left, mid]
# 右子数组区间 [mid + 1, right]
# 初始化辅助数组
tmp: list[int] = list(nums[left:right + 1])
# 左子数组的起始索引和结束索引
left_start: int = 0
left_end: int = mid - left
# 右子数组的起始索引和结束索引
right_start: int = mid + 1 - left
right_end: int = right - left
# i, j 分别指向左子数组、右子数组的首元素
i: int = left_start
j: int = right_start
# 通过覆盖原数组 nums 来合并左子数组和右子数组
for k in range(left, right + 1):
# 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if i > left_end:
nums[k] = tmp[j]
j += 1
# 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
elif j > right_end or tmp[i] <= tmp[j]:
nums[k] = tmp[i]
i += 1
# 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else:
nums[k] = tmp[j]
j += 1
def merge_sort(nums: list[int], left: int, right: int) -> None:
""" 归并排序 """
# 终止条件
if left >= right:
return # 当子数组长度为 1 时终止递归
# 划分阶段
mid: int = (left + right) // 2 # 计算中点
merge_sort(nums, left, mid) # 递归左子数组
merge_sort(nums, mid + 1, right) # 递归右子数组
# 合并阶段
merge(nums, left, mid, right)
merge_sort.go
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
func merge(nums []int, left, mid, right int) {
// 初始化辅助数组 借助 copy 模块
tmp := make([]int, right-left+1)
for i := left; i <= right; i++ {
tmp[i-left] = nums[i]
}
// 左子数组的起始索引和结束索引
leftStart, leftEnd := left-left, mid-left
// 右子数组的起始索引和结束索引
rightStart, rightEnd := mid+1-left, right-left
// i, j 分别指向左子数组、右子数组的首元素
i, j := leftStart, rightStart
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for k := left; k <= right; k++ {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if i > leftEnd {
nums[k] = tmp[j]
j++
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
} else if j > rightEnd || tmp[i] <= tmp[j] {
nums[k] = tmp[i]
i++
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
} else {
nums[k] = tmp[j]
j++
}
}
}
/* 归并排序 */
func mergeSort(nums []int, left, right int) {
// 终止条件
if left >= right {
return
}
// 划分阶段
mid := (left + right) / 2
mergeSort(nums, left, mid)
mergeSort(nums, mid+1, right)
// 合并阶段
merge(nums, left, mid, right)
}
merge_sort.js
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
function merge(nums, left, mid, right) {
// 初始化辅助数组
let tmp = nums.slice(left, right + 1);
// 左子数组的起始索引和结束索引
let leftStart = left - left, leftEnd = mid - left;
// 右子数组的起始索引和结束索引
let rightStart = mid + 1 - left, rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
let i = leftStart, j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for (let k = left; k <= right; k++) {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd) {
nums[k] = tmp[j++];
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
} else if (j > rightEnd || tmp[i] <= tmp[j]) {
nums[k] = tmp[i++];
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
} else {
nums[k] = tmp[j++];
}
}
}
/* 归并排序 */
function mergeSort(nums, left, right) {
// 终止条件
if (left >= right) return; // 当子数组长度为 1 时终止递归
// 划分阶段
let mid = Math.floor((left + right) / 2); // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}
merge_sort.ts
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
function merge(nums: number[], left: number, mid: number, right: number): void {
// 初始化辅助数组
let tmp = nums.slice(left, right + 1);
// 左子数组的起始索引和结束索引
let leftStart = left - left, leftEnd = mid - left;
// 右子数组的起始索引和结束索引
let rightStart = mid + 1 - left, rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
let i = leftStart, j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for (let k = left; k <= right; k++) {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd) {
nums[k] = tmp[j++];
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
} else if (j > rightEnd || tmp[i] <= tmp[j]) {
nums[k] = tmp[i++];
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
} else {
nums[k] = tmp[j++];
}
}
}
/* 归并排序 */
function mergeSort(nums: number[], left: number, right: number): void {
// 终止条件
if (left >= right) return; // 当子数组长度为 1 时终止递归
// 划分阶段
let mid = Math.floor((left + right) / 2); // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}
merge_sort.cs
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
void merge(int[] nums, int left, int mid, int right)
{
// 初始化辅助数组
int[] tmp = nums[left..(right + 1)];
// 左子数组的起始索引和结束索引
int leftStart = left - left, leftEnd = mid - left;
// 右子数组的起始索引和结束索引
int rightStart = mid + 1 - left, rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
int i = leftStart, j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for (int k = left; k <= right; k++)
{
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd)
nums[k] = tmp[j++];
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
else if (j > rightEnd || tmp[i] <= tmp[j])
nums[k] = tmp[i++];
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else
nums[k] = tmp[j++];
}
}
/* 归并排序 */
void mergeSort(int[] nums, int left, int right)
{
// 终止条件
if (left >= right) return; // 当子数组长度为 1 时终止递归
// 划分阶段
int mid = (left + right) / 2; // 计算中点
mergeSort(nums, left, mid); // 递归左子数组
mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
merge(nums, left, mid, right);
}
merge_sort.swift
/* 合并左子数组和右子数组 */
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
func merge(nums: inout [Int], left: Int, mid: Int, right: Int) {
// 初始化辅助数组
let tmp = Array(nums[left ..< (right + 1)])
// 左子数组的起始索引和结束索引
let leftStart = left - left
let leftEnd = mid - left
// 右子数组的起始索引和结束索引
let rightStart = mid + 1 - left
let rightEnd = right - left
// i, j 分别指向左子数组、右子数组的首元素
var i = leftStart
var j = rightStart
// 通过覆盖原数组 nums 来合并左子数组和右子数组
for k in left ... right {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if i > leftEnd {
nums[k] = tmp[j]
j += 1
}
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
else if j > rightEnd || tmp[i] <= tmp[j] {
nums[k] = tmp[i]
i += 1
}
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else {
nums[k] = tmp[j]
j += 1
}
}
}
/* 归并排序 */
func mergeSort(nums: inout [Int], left: Int, right: Int) {
// 终止条件
if left >= right { // 当子数组长度为 1 时终止递归
return
}
// 划分阶段
let mid = (left + right) / 2 // 计算中点
mergeSort(nums: &nums, left: left, right: mid) // 递归左子数组
mergeSort(nums: &nums, left: mid + 1, right: right) // 递归右子数组
// 合并阶段
merge(nums: &nums, left: left, mid: mid, right: right)
}
merge_sort.zig
// 合并左子数组和右子数组
// 左子数组区间 [left, mid]
// 右子数组区间 [mid + 1, right]
fn merge(nums: []i32, left: usize, mid: usize, right: usize) !void {
// 初始化辅助数组
var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer mem_arena.deinit();
const mem_allocator = mem_arena.allocator();
var tmp = try mem_allocator.alloc(i32, right + 1 - left);
std.mem.copy(i32, tmp, nums[left..right+1]);
// 左子数组的起始索引和结束索引
var leftStart = left - left;
var leftEnd = mid - left;
// 右子数组的起始索引和结束索引
var rightStart = mid + 1 - left;
var rightEnd = right - left;
// i, j 分别指向左子数组、右子数组的首元素
var i = leftStart;
var j = rightStart;
// 通过覆盖原数组 nums 来合并左子数组和右子数组
var k = left;
while (k <= right) : (k += 1) {
// 若“左子数组已全部合并完”,则选取右子数组元素,并且 j++
if (i > leftEnd) {
nums[k] = tmp[j];
j += 1;
// 否则,若“右子数组已全部合并完”或“左子数组元素 <= 右子数组元素”,则选取左子数组元素,并且 i++
} else if (j > rightEnd or tmp[i] <= tmp[j]) {
nums[k] = tmp[i];
i += 1;
// 否则,若“左右子数组都未全部合并完”且“左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
} else {
nums[k] = tmp[j];
j += 1;
}
}
}
// 归并排序
fn mergeSort(nums: []i32, left: usize, right: usize) !void {
// 终止条件
if (left >= right) return; // 当子数组长度为 1 时终止递归
// 划分阶段
var mid = (left + right) / 2; // 计算中点
try mergeSort(nums, left, mid); // 递归左子数组
try mergeSort(nums, mid + 1, right); // 递归右子数组
// 合并阶段
try merge(nums, left, mid, right);
}
下面重点解释一下合并方法 merge()
的流程:
- 初始化一个辅助数组
tmp
暂存待合并区间[left, right]
内的元素,后续通过覆盖原数组nums
的元素来实现合并; - 初始化指针
i
,j
,k
分别指向左子数组、右子数组、原数组的首元素; - 循环判断
tmp[i]
和tmp[j]
的大小,将较小的先覆盖至nums[k]
,指针i
,j
根据判断结果交替前进(指针k
也前进),直至两个子数组都遍历完,即可完成合并。
合并方法 merge()
代码中的主要难点:
nums
的待合并区间为[left, right]
,而因为tmp
只复制了nums
该区间元素,所以tmp
对应区间为[0, right - left]
,需要特别注意代码中各个变量的含义。- 判断
tmp[i]
和tmp[j]
的大小的操作中,还 需考虑当子数组遍历完成后的索引越界问题,即i > leftEnd
和j > rightEnd
的情况,索引越界的优先级是最高的,例如如果左子数组已经被合并完了,那么不用继续判断,直接合并右子数组元素即可。
11.5.2. 算法特性¶
时间复杂度 \(O(n \log n)\) :划分形成高度为 \(\log n\) 的递归树,每层合并的总操作数量为 \(n\) ,总体使用 \(O(n \log n)\) 时间。
空间复杂度 \(O(n)\) :需借助辅助数组实现合并,使用 \(O(n)\) 大小的额外空间;递归深度为 \(\log n\) ,使用 \(O(\log n)\) 大小的栈帧空间,因此是“非原地排序”。
在合并时,不改变相等元素的次序,是“稳定排序”。
11.5.3. 链表排序 *¶
归并排序有一个很特别的优势,用于排序链表时有很好的性能表现,空间复杂度可被优化至 \(O(1)\) ,这是因为:
- 由于链表可仅通过改变指针来实现结点增删,因此“将两个短有序链表合并为一个长有序链表”无需使用额外空间,即回溯合并阶段不用像排序数组一样建立辅助数组
tmp
; - 通过使用「迭代」代替「递归划分」,可省去递归使用的栈帧空间;
详情参考:148. 排序链表