6.3 雜湊演算法¶
前兩節介紹了雜湊表的工作原理和雜湊衝突的處理方法。然而無論是開放定址還是鏈式位址,它們只能保證雜湊表可以在發生衝突時正常工作,而無法減少雜湊衝突的發生。
如果雜湊衝突過於頻繁,雜湊表的效能則會急劇劣化。如圖 6-8 所示,對於鏈式位址雜湊表,理想情況下鍵值對均勻分佈在各個桶中,達到最佳查詢效率;最差情況下所有鍵值對都儲存到同一個桶中,時間複雜度退化至 \(O(n)\) 。
圖 6-8 雜湊衝突的最佳情況與最差情況
鍵值對的分佈情況由雜湊函式決定。回憶雜湊函式的計算步驟,先計算雜湊值,再對陣列長度取模:
觀察以上公式,當雜湊表容量 capacity
固定時,雜湊演算法 hash()
決定了輸出值,進而決定了鍵值對在雜湊表中的分佈情況。
這意味著,為了降低雜湊衝突的發生機率,我們應當將注意力集中在雜湊演算法 hash()
的設計上。
6.3.1 雜湊演算法的目標¶
為了實現“既快又穩”的雜湊表資料結構,雜湊演算法應具備以下特點。
- 確定性:對於相同的輸入,雜湊演算法應始終產生相同的輸出。這樣才能確保雜湊表是可靠的。
- 效率高:計算雜湊值的過程應該足夠快。計算開銷越小,雜湊表的實用性越高。
- 均勻分佈:雜湊演算法應使得鍵值對均勻分佈在雜湊表中。分佈越均勻,雜湊衝突的機率就越低。
實際上,雜湊演算法除了可以用於實現雜湊表,還廣泛應用於其他領域中。
- 密碼儲存:為了保護使用者密碼的安全,系統通常不會直接儲存使用者的明文密碼,而是儲存密碼的雜湊值。當用戶輸入密碼時,系統會對輸入的密碼計算雜湊值,然後與儲存的雜湊值進行比較。如果兩者匹配,那麼密碼就被視為正確。
- 資料完整性檢查:資料傳送方可以計算資料的雜湊值並將其一同傳送;接收方可以重新計算接收到的資料的雜湊值,並與接收到的雜湊值進行比較。如果兩者匹配,那麼資料就被視為完整。
對於密碼學的相關應用,為了防止從雜湊值推導出原始密碼等逆向工程,雜湊演算法需要具備更高等級的安全特性。
- 單向性:無法透過雜湊值反推出關於輸入資料的任何資訊。
- 抗碰撞性:應當極難找到兩個不同的輸入,使得它們的雜湊值相同。
- 雪崩效應:輸入的微小變化應當導致輸出的顯著且不可預測的變化。
請注意,“均勻分佈”與“抗碰撞性”是兩個獨立的概念,滿足均勻分佈不一定滿足抗碰撞性。例如,在隨機輸入 key
下,雜湊函式 key % 100
可以產生均勻分佈的輸出。然而該雜湊演算法過於簡單,所有後兩位相等的 key
的輸出都相同,因此我們可以很容易地從雜湊值反推出可用的 key
,從而破解密碼。
6.3.2 雜湊演算法的設計¶
雜湊演算法的設計是一個需要考慮許多因素的複雜問題。然而對於某些要求不高的場景,我們也能設計一些簡單的雜湊演算法。
- 加法雜湊:對輸入的每個字元的 ASCII 碼進行相加,將得到的總和作為雜湊值。
- 乘法雜湊:利用乘法的不相關性,每輪乘以一個常數,將各個字元的 ASCII 碼累積到雜湊值中。
- 互斥或雜湊:將輸入資料的每個元素透過互斥或操作累積到一個雜湊值中。
- 旋轉雜湊:將每個字元的 ASCII 碼累積到一個雜湊值中,每次累積之前都會對雜湊值進行旋轉操作。
def add_hash(key: str) -> int:
"""加法雜湊"""
hash = 0
modulus = 1000000007
for c in key:
hash += ord(c)
return hash % modulus
def mul_hash(key: str) -> int:
"""乘法雜湊"""
hash = 0
modulus = 1000000007
for c in key:
hash = 31 * hash + ord(c)
return hash % modulus
def xor_hash(key: str) -> int:
"""互斥或雜湊"""
hash = 0
modulus = 1000000007
for c in key:
hash ^= ord(c)
return hash % modulus
def rot_hash(key: str) -> int:
"""旋轉雜湊"""
hash = 0
modulus = 1000000007
for c in key:
hash = (hash << 4) ^ (hash >> 28) ^ ord(c)
return hash % modulus
/* 加法雜湊 */
int addHash(string key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash = (hash + (int)c) % MODULUS;
}
return (int)hash;
}
/* 乘法雜湊 */
int mulHash(string key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash = (31 * hash + (int)c) % MODULUS;
}
return (int)hash;
}
/* 互斥或雜湊 */
int xorHash(string key) {
int hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash ^= (int)c;
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
int rotHash(string key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (unsigned char c : key) {
hash = ((hash << 4) ^ (hash >> 28) ^ (int)c) % MODULUS;
}
return (int)hash;
}
/* 加法雜湊 */
int addHash(String key) {
long hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash = (hash + (int) c) % MODULUS;
}
return (int) hash;
}
/* 乘法雜湊 */
int mulHash(String key) {
long hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash = (31 * hash + (int) c) % MODULUS;
}
return (int) hash;
}
/* 互斥或雜湊 */
int xorHash(String key) {
int hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash ^= (int) c;
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
int rotHash(String key) {
long hash = 0;
final int MODULUS = 1000000007;
for (char c : key.toCharArray()) {
hash = ((hash << 4) ^ (hash >> 28) ^ (int) c) % MODULUS;
}
return (int) hash;
}
/* 加法雜湊 */
int AddHash(string key) {
long hash = 0;
const int MODULUS = 1000000007;
foreach (char c in key) {
hash = (hash + c) % MODULUS;
}
return (int)hash;
}
/* 乘法雜湊 */
int MulHash(string key) {
long hash = 0;
const int MODULUS = 1000000007;
foreach (char c in key) {
hash = (31 * hash + c) % MODULUS;
}
return (int)hash;
}
/* 互斥或雜湊 */
int XorHash(string key) {
int hash = 0;
const int MODULUS = 1000000007;
foreach (char c in key) {
hash ^= c;
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
int RotHash(string key) {
long hash = 0;
const int MODULUS = 1000000007;
foreach (char c in key) {
hash = ((hash << 4) ^ (hash >> 28) ^ c) % MODULUS;
}
return (int)hash;
}
/* 加法雜湊 */
func addHash(key string) int {
var hash int64
var modulus int64
modulus = 1000000007
for _, b := range []byte(key) {
hash = (hash + int64(b)) % modulus
}
return int(hash)
}
/* 乘法雜湊 */
func mulHash(key string) int {
var hash int64
var modulus int64
modulus = 1000000007
for _, b := range []byte(key) {
hash = (31*hash + int64(b)) % modulus
}
return int(hash)
}
/* 互斥或雜湊 */
func xorHash(key string) int {
hash := 0
modulus := 1000000007
for _, b := range []byte(key) {
fmt.Println(int(b))
hash ^= int(b)
hash = (31*hash + int(b)) % modulus
}
return hash & modulus
}
/* 旋轉雜湊 */
func rotHash(key string) int {
var hash int64
var modulus int64
modulus = 1000000007
for _, b := range []byte(key) {
hash = ((hash << 4) ^ (hash >> 28) ^ int64(b)) % modulus
}
return int(hash)
}
/* 加法雜湊 */
func addHash(key: String) -> Int {
var hash = 0
let MODULUS = 1_000_000_007
for c in key {
for scalar in c.unicodeScalars {
hash = (hash + Int(scalar.value)) % MODULUS
}
}
return hash
}
/* 乘法雜湊 */
func mulHash(key: String) -> Int {
var hash = 0
let MODULUS = 1_000_000_007
for c in key {
for scalar in c.unicodeScalars {
hash = (31 * hash + Int(scalar.value)) % MODULUS
}
}
return hash
}
/* 互斥或雜湊 */
func xorHash(key: String) -> Int {
var hash = 0
let MODULUS = 1_000_000_007
for c in key {
for scalar in c.unicodeScalars {
hash ^= Int(scalar.value)
}
}
return hash & MODULUS
}
/* 旋轉雜湊 */
func rotHash(key: String) -> Int {
var hash = 0
let MODULUS = 1_000_000_007
for c in key {
for scalar in c.unicodeScalars {
hash = ((hash << 4) ^ (hash >> 28) ^ Int(scalar.value)) % MODULUS
}
}
return hash
}
/* 加法雜湊 */
function addHash(key) {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash = (hash + c.charCodeAt(0)) % MODULUS;
}
return hash;
}
/* 乘法雜湊 */
function mulHash(key) {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash = (31 * hash + c.charCodeAt(0)) % MODULUS;
}
return hash;
}
/* 互斥或雜湊 */
function xorHash(key) {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash ^= c.charCodeAt(0);
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
function rotHash(key) {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;
}
return hash;
}
/* 加法雜湊 */
function addHash(key: string): number {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash = (hash + c.charCodeAt(0)) % MODULUS;
}
return hash;
}
/* 乘法雜湊 */
function mulHash(key: string): number {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash = (31 * hash + c.charCodeAt(0)) % MODULUS;
}
return hash;
}
/* 互斥或雜湊 */
function xorHash(key: string): number {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash ^= c.charCodeAt(0);
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
function rotHash(key: string): number {
let hash = 0;
const MODULUS = 1000000007;
for (const c of key) {
hash = ((hash << 4) ^ (hash >> 28) ^ c.charCodeAt(0)) % MODULUS;
}
return hash;
}
/* 加法雜湊 */
int addHash(String key) {
int hash = 0;
final int MODULUS = 1000000007;
for (int i = 0; i < key.length; i++) {
hash = (hash + key.codeUnitAt(i)) % MODULUS;
}
return hash;
}
/* 乘法雜湊 */
int mulHash(String key) {
int hash = 0;
final int MODULUS = 1000000007;
for (int i = 0; i < key.length; i++) {
hash = (31 * hash + key.codeUnitAt(i)) % MODULUS;
}
return hash;
}
/* 互斥或雜湊 */
int xorHash(String key) {
int hash = 0;
final int MODULUS = 1000000007;
for (int i = 0; i < key.length; i++) {
hash ^= key.codeUnitAt(i);
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
int rotHash(String key) {
int hash = 0;
final int MODULUS = 1000000007;
for (int i = 0; i < key.length; i++) {
hash = ((hash << 4) ^ (hash >> 28) ^ key.codeUnitAt(i)) % MODULUS;
}
return hash;
}
/* 加法雜湊 */
fn add_hash(key: &str) -> i32 {
let mut hash = 0_i64;
const MODULUS: i64 = 1000000007;
for c in key.chars() {
hash = (hash + c as i64) % MODULUS;
}
hash as i32
}
/* 乘法雜湊 */
fn mul_hash(key: &str) -> i32 {
let mut hash = 0_i64;
const MODULUS: i64 = 1000000007;
for c in key.chars() {
hash = (31 * hash + c as i64) % MODULUS;
}
hash as i32
}
/* 互斥或雜湊 */
fn xor_hash(key: &str) -> i32 {
let mut hash = 0_i64;
const MODULUS: i64 = 1000000007;
for c in key.chars() {
hash ^= c as i64;
}
(hash & MODULUS) as i32
}
/* 旋轉雜湊 */
fn rot_hash(key: &str) -> i32 {
let mut hash = 0_i64;
const MODULUS: i64 = 1000000007;
for c in key.chars() {
hash = ((hash << 4) ^ (hash >> 28) ^ c as i64) % MODULUS;
}
hash as i32
}
/* 加法雜湊 */
int addHash(char *key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (int i = 0; i < strlen(key); i++) {
hash = (hash + (unsigned char)key[i]) % MODULUS;
}
return (int)hash;
}
/* 乘法雜湊 */
int mulHash(char *key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (int i = 0; i < strlen(key); i++) {
hash = (31 * hash + (unsigned char)key[i]) % MODULUS;
}
return (int)hash;
}
/* 互斥或雜湊 */
int xorHash(char *key) {
int hash = 0;
const int MODULUS = 1000000007;
for (int i = 0; i < strlen(key); i++) {
hash ^= (unsigned char)key[i];
}
return hash & MODULUS;
}
/* 旋轉雜湊 */
int rotHash(char *key) {
long long hash = 0;
const int MODULUS = 1000000007;
for (int i = 0; i < strlen(key); i++) {
hash = ((hash << 4) ^ (hash >> 28) ^ (unsigned char)key[i]) % MODULUS;
}
return (int)hash;
}
/* 加法雜湊 */
fun addHash(key: String): Int {
var hash = 0L
for (c in key.toCharArray()) {
hash = (hash + c.code) % MODULUS
}
return hash.toInt()
}
/* 乘法雜湊 */
fun mulHash(key: String): Int {
var hash = 0L
for (c in key.toCharArray()) {
hash = (31 * hash + c.code) % MODULUS
}
return hash.toInt()
}
/* 互斥或雜湊 */
fun xorHash(key: String): Int {
var hash = 0
for (c in key.toCharArray()) {
hash = hash xor c.code
}
return hash and MODULUS
}
/* 旋轉雜湊 */
fun rotHash(key: String): Int {
var hash = 0L
for (c in key.toCharArray()) {
hash = ((hash shl 4) xor (hash shr 28) xor c.code.toLong()) % MODULUS
}
return hash.toInt()
}
視覺化執行
觀察發現,每種雜湊演算法的最後一步都是對大質數 \(1000000007\) 取模,以確保雜湊值在合適的範圍內。值得思考的是,為什麼要強調對質數取模,或者說對合數取模的弊端是什麼?這是一個有趣的問題。
先丟擲結論:使用大質數作為模數,可以最大化地保證雜湊值的均勻分佈。因為質數不與其他數字存在公約數,可以減少因取模操作而產生的週期性模式,從而避免雜湊衝突。
舉個例子,假設我們選擇合數 \(9\) 作為模數,它可以被 \(3\) 整除,那麼所有可以被 \(3\) 整除的 key
都會被對映到 \(0\)、\(3\)、\(6\) 這三個雜湊值。
如果輸入 key
恰好滿足這種等差數列的資料分佈,那麼雜湊值就會出現聚堆積,從而加重雜湊衝突。現在,假設將 modulus
替換為質數 \(13\) ,由於 key
和 modulus
之間不存在公約數,因此輸出的雜湊值的均勻性會明顯提升。
值得說明的是,如果能夠保證 key
是隨機均勻分佈的,那麼選擇質數或者合數作為模數都可以,它們都能輸出均勻分佈的雜湊值。而當 key
的分佈存在某種週期性時,對合數取模更容易出現聚集現象。
總而言之,我們通常選取質數作為模數,並且這個質數最好足夠大,以儘可能消除週期性模式,提升雜湊演算法的穩健性。
6.3.3 常見雜湊演算法¶
不難發現,以上介紹的簡單雜湊演算法都比較“脆弱”,遠遠沒有達到雜湊演算法的設計目標。例如,由於加法和互斥或滿足交換律,因此加法雜湊和互斥或雜湊無法區分內容相同但順序不同的字串,這可能會加劇雜湊衝突,並引起一些安全問題。
在實際中,我們通常會用一些標準雜湊演算法,例如 MD5、SHA-1、SHA-2 和 SHA-3 等。它們可以將任意長度的輸入資料對映到恆定長度的雜湊值。
近一個世紀以來,雜湊演算法處在不斷升級與最佳化的過程中。一部分研究人員努力提升雜湊演算法的效能,另一部分研究人員和駭客則致力於尋找雜湊演算法的安全性問題。表 6-2 展示了在實際應用中常見的雜湊演算法。
- MD5 和 SHA-1 已多次被成功攻擊,因此它們被各類安全應用棄用。
- SHA-2 系列中的 SHA-256 是最安全的雜湊演算法之一,仍未出現成功的攻擊案例,因此常用在各類安全應用與協議中。
- SHA-3 相較 SHA-2 的實現開銷更低、計算效率更高,但目前使用覆蓋度不如 SHA-2 系列。
表 6-2 常見的雜湊演算法
MD5 | SHA-1 | SHA-2 | SHA-3 | |
---|---|---|---|---|
推出時間 | 1992 | 1995 | 2002 | 2008 |
輸出長度 | 128 bit | 160 bit | 256/512 bit | 224/256/384/512 bit |
雜湊衝突 | 較多 | 較多 | 很少 | 很少 |
安全等級 | 低,已被成功攻擊 | 低,已被成功攻擊 | 高 | 高 |
應用 | 已被棄用,仍用於資料完整性檢查 | 已被棄用 | 加密貨幣交易驗證、數字簽名等 | 可用於替代 SHA-2 |
6.3.4 資料結構的雜湊值¶
我們知道,雜湊表的 key
可以是整數、小數或字串等資料型別。程式語言通常會為這些資料型別提供內建的雜湊演算法,用於計算雜湊表中的桶索引。以 Python 為例,我們可以呼叫 hash()
函式來計算各種資料型別的雜湊值。
- 整數和布林量的雜湊值就是其本身。
- 浮點數和字串的雜湊值計算較為複雜,有興趣的讀者請自行學習。
- 元組的雜湊值是對其中每一個元素進行雜湊,然後將這些雜湊值組合起來,得到單一的雜湊值。
- 物件的雜湊值基於其記憶體位址生成。透過重寫物件的雜湊方法,可實現基於內容生成雜湊值。
Tip
請注意,不同程式語言的內建雜湊值計算函式的定義和方法不同。
num = 3
hash_num = hash(num)
# 整數 3 的雜湊值為 3
bol = True
hash_bol = hash(bol)
# 布林量 True 的雜湊值為 1
dec = 3.14159
hash_dec = hash(dec)
# 小數 3.14159 的雜湊值為 326484311674566659
str = "Hello 演算法"
hash_str = hash(str)
# 字串“Hello 演算法”的雜湊值為 4617003410720528961
tup = (12836, "小哈")
hash_tup = hash(tup)
# 元組 (12836, '小哈') 的雜湊值為 1029005403108185979
obj = ListNode(0)
hash_obj = hash(obj)
# 節點物件 <ListNode object at 0x1058fd810> 的雜湊值為 274267521
int num = 3;
size_t hashNum = hash<int>()(num);
// 整數 3 的雜湊值為 3
bool bol = true;
size_t hashBol = hash<bool>()(bol);
// 布林量 1 的雜湊值為 1
double dec = 3.14159;
size_t hashDec = hash<double>()(dec);
// 小數 3.14159 的雜湊值為 4614256650576692846
string str = "Hello 演算法";
size_t hashStr = hash<string>()(str);
// 字串“Hello 演算法”的雜湊值為 15466937326284535026
// 在 C++ 中,內建 std:hash() 僅提供基本資料型別的雜湊值計算
// 陣列、物件的雜湊值計算需要自行實現
int num = 3;
int hashNum = Integer.hashCode(num);
// 整數 3 的雜湊值為 3
boolean bol = true;
int hashBol = Boolean.hashCode(bol);
// 布林量 true 的雜湊值為 1231
double dec = 3.14159;
int hashDec = Double.hashCode(dec);
// 小數 3.14159 的雜湊值為 -1340954729
String str = "Hello 演算法";
int hashStr = str.hashCode();
// 字串“Hello 演算法”的雜湊值為 -727081396
Object[] arr = { 12836, "小哈" };
int hashTup = Arrays.hashCode(arr);
// 陣列 [12836, 小哈] 的雜湊值為 1151158
ListNode obj = new ListNode(0);
int hashObj = obj.hashCode();
// 節點物件 utils.ListNode@7dc5e7b4 的雜湊值為 2110121908
int num = 3;
int hashNum = num.GetHashCode();
// 整數 3 的雜湊值為 3;
bool bol = true;
int hashBol = bol.GetHashCode();
// 布林量 true 的雜湊值為 1;
double dec = 3.14159;
int hashDec = dec.GetHashCode();
// 小數 3.14159 的雜湊值為 -1340954729;
string str = "Hello 演算法";
int hashStr = str.GetHashCode();
// 字串“Hello 演算法”的雜湊值為 -586107568;
object[] arr = [12836, "小哈"];
int hashTup = arr.GetHashCode();
// 陣列 [12836, 小哈] 的雜湊值為 42931033;
ListNode obj = new(0);
int hashObj = obj.GetHashCode();
// 節點物件 0 的雜湊值為 39053774;
let num = 3
let hashNum = num.hashValue
// 整數 3 的雜湊值為 9047044699613009734
let bol = true
let hashBol = bol.hashValue
// 布林量 true 的雜湊值為 -4431640247352757451
let dec = 3.14159
let hashDec = dec.hashValue
// 小數 3.14159 的雜湊值為 -2465384235396674631
let str = "Hello 演算法"
let hashStr = str.hashValue
// 字串“Hello 演算法”的雜湊值為 -7850626797806988787
let arr = [AnyHashable(12836), AnyHashable("小哈")]
let hashTup = arr.hashValue
// 陣列 [AnyHashable(12836), AnyHashable("小哈")] 的雜湊值為 -2308633508154532996
let obj = ListNode(x: 0)
let hashObj = obj.hashValue
// 節點物件 utils.ListNode 的雜湊值為 -2434780518035996159
int num = 3;
int hashNum = num.hashCode;
// 整數 3 的雜湊值為 34803
bool bol = true;
int hashBol = bol.hashCode;
// 布林值 true 的雜湊值為 1231
double dec = 3.14159;
int hashDec = dec.hashCode;
// 小數 3.14159 的雜湊值為 2570631074981783
String str = "Hello 演算法";
int hashStr = str.hashCode;
// 字串“Hello 演算法”的雜湊值為 468167534
List arr = [12836, "小哈"];
int hashArr = arr.hashCode;
// 陣列 [12836, 小哈] 的雜湊值為 976512528
ListNode obj = new ListNode(0);
int hashObj = obj.hashCode;
// 節點物件 Instance of 'ListNode' 的雜湊值為 1033450432
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
let num = 3;
let mut num_hasher = DefaultHasher::new();
num.hash(&mut num_hasher);
let hash_num = num_hasher.finish();
// 整數 3 的雜湊值為 568126464209439262
let bol = true;
let mut bol_hasher = DefaultHasher::new();
bol.hash(&mut bol_hasher);
let hash_bol = bol_hasher.finish();
// 布林量 true 的雜湊值為 4952851536318644461
let dec: f32 = 3.14159;
let mut dec_hasher = DefaultHasher::new();
dec.to_bits().hash(&mut dec_hasher);
let hash_dec = dec_hasher.finish();
// 小數 3.14159 的雜湊值為 2566941990314602357
let str = "Hello 演算法";
let mut str_hasher = DefaultHasher::new();
str.hash(&mut str_hasher);
let hash_str = str_hasher.finish();
// 字串“Hello 演算法”的雜湊值為 16092673739211250988
let arr = (&12836, &"小哈");
let mut tup_hasher = DefaultHasher::new();
arr.hash(&mut tup_hasher);
let hash_tup = tup_hasher.finish();
// 元組 (12836, "小哈") 的雜湊值為 1885128010422702749
let node = ListNode::new(42);
let mut hasher = DefaultHasher::new();
node.borrow().val.hash(&mut hasher);
let hash = hasher.finish();
// 節點物件 RefCell { value: ListNode { val: 42, next: None } } 的雜湊值為15387811073369036852
val num = 3
val hashNum = num.hashCode()
// 整數 3 的雜湊值為 3
val bol = true
val hashBol = bol.hashCode()
// 布林量 true 的雜湊值為 1231
val dec = 3.14159
val hashDec = dec.hashCode()
// 小數 3.14159 的雜湊值為 -1340954729
val str = "Hello 演算法"
val hashStr = str.hashCode()
// 字串“Hello 演算法”的雜湊值為 -727081396
val arr = arrayOf<Any>(12836, "小哈")
val hashTup = arr.hashCode()
// 陣列 [12836, 小哈] 的雜湊值為 189568618
val obj = ListNode(0)
val hashObj = obj.hashCode()
// 節點物件 utils.ListNode@1d81eb93 的雜湊值為 495053715
視覺化執行
在許多程式語言中,只有不可變物件才可作為雜湊表的 key
。假如我們將串列(動態陣列)作為 key
,當串列的內容發生變化時,它的雜湊值也隨之改變,我們就無法在雜湊表中查詢到原先的 value
了。
雖然自定義物件(比如鏈結串列節點)的成員變數是可變的,但它是可雜湊的。這是因為物件的雜湊值通常是基於記憶體位址生成的,即使物件的內容發生了變化,但它的記憶體位址不變,雜湊值仍然是不變的。
細心的你可能發現在不同控制檯中執行程式時,輸出的雜湊值是不同的。這是因為 Python 直譯器在每次啟動時,都會為字串雜湊函式加入一個隨機的鹽(salt)值。這種做法可以有效防止 HashDoS 攻擊,提升雜湊演算法的安全性。